ﻻ يوجد ملخص باللغة العربية
A proto-neutron star (PNS) is a newly formed compact object in a core collapse supernova. In this Letter, the neutrino emission from the cooling process of a PNS is investigated using two types of nuclear equation of state (EOS). It is found that the neutrino signal is mainly determined by the high-density EOS. The neutrino luminosity and mean energy are higher and the cooling time scale is longer for the softer EOS. Meanwhile, the neutrino mean energy and the cooling time scale are also affected by the low-density EOS because of the difference in the population of heavy nuclei. Heavy nuclei have a large scattering cross section with neutrinos owing to the coherent effects and act as thermal insulation near the surface of a PNS. The neutrino mean energy is higher and the cooling time scale is longer for an EOS with a large symmetry energy at low densities, namely a small density derivative coefficient of the symmetry energy, $L$.
This paper provides an overview of the possible role of Quantum Chromo Dynamics (QDC) for neutron stars and strange stars. The fundamental degrees of freedom of QCD are quarks, which may exist as unconfined (color superconducting) particles in the co
In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular e
We study the implications on compact star properties of a soft nuclear equation of state determined from kaon production at subthreshold energies in heavy-ion collisions. On one hand, we apply these results to study radii and moments of inertia of li
We explore the thermal and magnetic-field structure of a late-stage proto-neutron star. We find the dominant contribution to the entropy in different regions of the star, from which we build a simplified equation of state for the hot neutron star. Wi
We use covariant density functional theory to obtain the equation of state (EoS) of matter in compact stars at non-zero temperature, including the full baryon octet as well as the $Delta(1232)$ resonance states. Global properties of hot $Delta$-admix