ترغب بنشر مسار تعليمي؟ اضغط هنا

Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating

156   0   0.0 ( 0 )
 نشر من قبل Wenjing Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials which are difficult to synthesize otherwise. We report high-temperature vapor phase anion exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials phase and composition at the nanoscale allowing synthesis of novel materials.



قيم البحث

اقرأ أيضاً

171 - S. Lany , A. Zunger 2005
Using first-principles electronic structure calculations we identify the anion vacancies in II-VI and chalcopyrite Cu-III-VI2 semiconductors as a class of intrinsic defects that can exhibit metastable behavior. Specifically, we predict persistent ele ctron photoconductivity (n-type PPC) caused by the oxygen vacancy VO in n-ZnO, and persistent hole photoconductivity (p-type PPC) caused by the Se vacancy VSe in p-CuInSe2 and p-CuGaSe2. We find that VSe in the chalcopyrite materials is amphoteric having two negative-U like transitions, i.e. a double-donor transition e(2+/0) close to the valence band and a double-acceptor transition e(0/2-) closer to the conduction band. We introduce a classification scheme that distinguishes two types of defects (e.g., donors): type-alpha, which have a defect-localized-state (DLS) in the gap, and type-beta, which have a resonant DLS within the host bands (e.g., conduction band). In the latter case, the introduced carriers (e.g., electrons) relax to the band edge where they can occupy a perturbed-host-state (PHS). Type alpha is non-conducting, whereas type beta is conducting. We identify the neutral anion vacancy as type-alpha and the doubly positively charged vacancy as type-beta. We suggest that illumination changes the charge state of the anion vacancy and leads to a crossover between alpha- and beta-type behavior, resulting in metastability and PPC. In CuInSe2, the metastable behavior of VSe is carried over to the (VSe-VCu) complex, which we identify as the physical origin of PPC observed experimentally. We explain previous puzzling experimental results in ZnO and CuInSe2 in the light of this model.
118 - T. Chanier , F. Virot , R. Hayn 2009
We have calculated the chemical trend of magnetic exchange parameters ($J_{dd}$, $N alpha$, and $N beta$) of Zn-based II-VI semiconductors ZnA (A=O, S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the L SDA+$U$ method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling $J_{dd}$ between localized 3$d$ spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band $N alpha$ are in good agreement with experiment as well. But the values for $N beta$ (coupling to doped holes in the valence band) indicate a cross-over from weak coupling (for A=Te and Se) to strong coupling (for A=O) and a localized hole state in ZnO:Mn. That hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.
Assessing atomic defect states and their ramifications on the electronic properties of two dimensional van der Waals semiconducting transition metal dichalcogenides (SC TMDs) is the primary task to expedite multi disciplinary efforts in the promotion of next generation electrical and optical device applications utilizing these low dimensional materials. Here, with electron tunneling and optical spectroscopy measurements with density functional theory, we spectroscopically locate the midgap states from chalcogen atom vacancies in four representative monolayer SC TMDs (MoS2, WS2, MoSe2, WSe2), and carefully analyze the similarities and dissimilarities of the atomic defects in four distinctive materials regarding the physical origins of the missing chalcogen atoms and the implications to SC mTMD properties. In addition, we address both quasiparticle and optical energy gaps of the SC mTMD films and find out many body interactions significantly enlarge the quasiparticle energy gaps and excitonic binding energies, when the semiconducting monolayers are encapsulated by non interacting hexagonal boron nitride layers.
Heteroepitaxial growth of selected group IV-VI nitrides on various orientations of sapphire (alpha-Al2O3) is demonstrated using atomic layer deposition. High quality, epitaxial films are produced at significantly lower temperatures than required by c onventional deposition methods. Characterization of electrical and superconducting properties of epitaxial films reveals a reduced room temperature resistivity and increased residual resistance ratio (RRR) for films deposited on sapphire compared to polycrystalline samples deposited concurrently on fused quartz substrates.
Structural transformation between metallic (1T) and semiconducting (2H) phases of single-layered MoS2 was systematically investigated by an in situ STEM with atomic precision. The 1T/2H phase transition is comprised of S and/or Mo atomic-plane glides , and requires an intermediate phase ({alpha}-phase) as an indispensable precursor. Migration of two kinds of boundaries ({beta} and {gamma}-boundaries) is also found to be responsible for the growth of the second phase. The 1T phase can be intentionally introduced in the 2H matrix by using a high dose of incident electron beam during heating the MoS2 single-layers up to 400~700{deg}C in high vacuum and indeed controllable in size. This work may lead to the possible fabrication of composite nano-devices made of local domains with distinct electronic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا