ﻻ يوجد ملخص باللغة العربية
We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Luscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with $N_f=2+1$ dynamical flavours and discuss how the long-distance contribution can be accurately constrained by a dedicated spectrum calculation in the iso-vector channel.
We report on our ongoing project to determine the leading-order hadronic vacuum polarisation contribution to the muon $g-2$, using ensembles with $N_f=2+1$ flavours of O($a$) improved Wilson quarks generated by the CLS effort, with pion masses down to the physical value. We employ O($a$) improve
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum pol
We report on our computation of the leading hadronic contribution to the anomalous magnetic moment of the muon using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. The strange quark is introduced in the quenched approxima
We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacu
We study the finite-volume correction on the hadronic vacuum polarization contribution to the muon g-2 ($a_mu^{rm hvp}$) in lattice QCD at (near) physical pion mass using two different volumes: $(5.4~{rm fm})^4$ and $(8.1~{rm fm})^4$. We use an optim