ترغب بنشر مسار تعليمي؟ اضغط هنا

A lattice calculation of the hadronic vacuum polarization contribution to $(g-2)_mu$

101   0   0.0 ( 0 )
 نشر من قبل Hartmut Wittig
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Luscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with $N_f=2+1$ dynamical flavours and discuss how the long-distance contribution can be accurately constrained by a dedicated spectrum calculation in the iso-vector channel.



قيم البحث

اقرأ أيضاً

We report on our ongoing project to determine the leading-order hadronic vacuum polarisation contribution to the muon $g-2$, using ensembles with $N_f=2+1$ flavours of O($a$) improved Wilson quarks generated by the CLS effort, with pion masses down to the physical value. We employ O($a$) improve
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum pol arization function. To this end we employ several complementary approaches, including Pade fits, time moments and the time-momentum representation. We correct our results for finite-volume effects by combining the Gounaris-Sakurai parameterization of the timelike pion form factor with the Luscher formalism. On a subset of our ensembles we have derived an upper bound on the magnitude of quark-disconnected diagrams and found that they decrease the estimate for $a_mu^{mathrm hvp}$ by at most 2%. Our final result is $a_mu^{mathrm hvp}=(654pm32,{}^{+21}_{-23})cdot 10^{-10}$, where the first error is statistical, and the second denotes the combined systematic uncertainty. Based on our findings we discuss the prospects for determining $a_mu^{mathrm hvp}$ with sub-percent precision.
We report on our computation of the leading hadronic contribution to the anomalous magnetic moment of the muon using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. The strange quark is introduced in the quenched approxima tion. Partially twisted boundary conditions are applied to improve the momentum resolution in the relevant integral. Our results, obtained at three different values of the lattice spacing, allow for a preliminary study of discretization effects. We explore a wide range of lattice volumes, namely 2 fm < L < 3 fm, with pion masses from 600 to 280 MeV and discuss different chiral extrapolations to the physical point. We observe a non-trivial dependence of a_mu(HLO) on m_pi especially for small pion masses. The final result, a_mu(HLO)=618(64)*10^(-10), is obtained by considering only the quark connected contribution to the vacuum polarization. We present a detailed analysis of systematic errors and discuss how they can be reduced in future simulations.
We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacu um polarisation tensor to a combination of local and point-split currents which significantly reduces the numerical effort. Partially twisted boundary conditions allow us to improve the momentum resolution of the vacuum polarisation tensor and therefore the determination of the leading hadronic contribution to (g-2)_mu. We also extended the range of ensembles to include a pion mass below 200 MeV which allows us to check the non-trivial chiral behaviour of a_mu^HLO.
We study the finite-volume correction on the hadronic vacuum polarization contribution to the muon g-2 ($a_mu^{rm hvp}$) in lattice QCD at (near) physical pion mass using two different volumes: $(5.4~{rm fm})^4$ and $(8.1~{rm fm})^4$. We use an optim ized AMA technique for noise reduction on $N_f=2+1$ PACS gauge configurations with stout-smeared clover-Wilson fermion action and Iwasaki gauge action at a single lattice cut-off $a^{-1}=2.33$ GeV. The calculation is performed for the quark-connected light-quark contribution in the isospin symmetric limit. We take into account the effects of backward state propagation by extending a temporal boundary condition. In addition we study a quark-mass correction to tune to the exactly same physical pion mass on different volume and compare those correction with chiral perturbation. We find $10(26)times10^{-10}$ difference for light quark $a_mu^{rm hvp}$ between $(5.4~{rm fm})^4$ and $(8.1~{rm fm})^4$ lattice in 146 MeV pion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا