ﻻ يوجد ملخص باللغة العربية
We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge $g_T$ from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with $g_T$ values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses which found significantly smaller $g_T$ values. The contributions to the nucleon tensor charge from $u$ and $d$ quarks are found to be $delta u = 0.3(2)$ and $delta d = -0.7(2)$ at a scale $Q^2 = 2$ GeV$^2$.
We perform the first global QCD analysis of pion valence, sea quark, and gluon distributions within a Bayesian Monte Carlo framework with threshold resummation on Drell-Yan cross sections at next-to-leading log accuracy. Exploring various treatments
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the
We present the first calculation of the $x$-dependence of the isovector transversity generalized parton distributions (GPDs) for the proton within lattice QCD. We compute the matrix elements with non-local operators containing a Wilson line. The calc
We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets and in proton-proton col
We present the first lattice QCD calculation of the charm quark contribution to the nucleon electromagnetic form factors $G^c_{E,M}(Q^2)$ in the momentum transfer range $0leq Q^2 leq 1.4$ $rm GeV^2$. The quark mass dependence, finite lattice spacing