ﻻ يوجد ملخص باللغة العربية
For every Turing machine, we construct an automaton group that simulates it. Precisely, starting from an initial configuration of the Turing machine, we explicitly construct an element of the group such that the Turing machine stops if, and only if, this element is of finite order.If the Turing machine is universal, the corresponding automaton group has an undecidable order problem. This solves a problem raised by Grigorchuk.The above group also has an undecidable Engel problem: there is no algorithm that, given g, h in the group, decides whether there exists an integer n such that the n-iterated commutator [...[[g,h],h],...,h]$ is the identity or not. This solves a problem raised by Bartholdi.
The finiteness problem for automaton groups and semigroups has been widely studied, several partial positive results are known. However we prove that, in the most general case, the problem is undecidable. We study the case of automaton semigroups. Gi
Let $G$ be a finite group of odd order admitting an involutory automorphism $phi$. We obtain two results bounding the exponent of $[G,phi]$. Denote by $G_{-phi}$ the set ${[g,phi],vert, gin G}$ and by $G_{phi}$ the centralizer of $phi$, that is, the
We solve some decision problems for timed automata which were recently raised by S. Tripakis in [ Folk Theorems on the Determinization and Minimization of Timed Automata, in the Proceedings of the International Workshop FORMATS2003, LNCS, Volume 2791
The aim of this paper is to investigate whether the class of automaton semigroups is closed under certain semigroup constructions. We prove that the free product of two automaton semigroups that contain left identities is again an automaton semigroup
An improvement on earlier results on free products of automaton semigroups; showing that a free product of two automaton semigroups is again an automaton semigroup providing there exists a homomorphism from one of the base semigroups to the other. Th