ترغب بنشر مسار تعليمي؟ اضغط هنا

sl(n,H)-Current Algebra on S^3

291   0   0.0 ( 0 )
 نشر من قبل Toshiaki Kori
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tosiaki Kori




اسأل ChatGPT حول البحث

We introduce three non-trivial 2-cocycles $c_k$, k=0,1,2, on the Lie algebra $S^3H=Map(S^3,H)$ with the aid of the corresponding basis vector fields on $S^3$, and extend them to 2-cocycles on the Lie algebra $S^3gl(n,H)=S^3H otimes gl(n,C)$. Then we have the corresponding central extension $S^3gl(n,H)oplus oplus_k (Ca_k)$. As a subalgebra of $S^3H$ we have the algebra $C[phi]$ of the Laurent polynomial spinors on $S^3$. Then we have a Lie subalgebra $hat{gl}(n, H)=C[phi] otimes gl(n, C)$ of $S^3gl(n,H)$, as well as its central extension by the 2-cocycles ${c_k}$ and the Euler vector field $d$: $hat{gl}=hat{gl}(n, H) oplus oplus_k(Ca_k)oplus Cd$ . The Lie algebra $hat{sl}(n,H)$ is defined as a Lie subalgebra of $hat{gl}(n,H)$ generated by $C[phi]otimes sl(n,C))$. We have the corresponding central extension of $hat{sl}(n,H)$ by the 2-cocycles ${c_k}$ and the derivation $d$, which becomes a Lie subalgebra $hat{sl}$ of $hat{gl}$. Let $h_0$ be a Cartan subalgebra of $sl(n,C)$ and $hat{h}=h_0 oplus oplus_k(Ca_k)oplus Cd$. The root space decomposition of the $ad(hat{h})$-representation of $hat{sl}$ is obtained. The set of roots is $Delta ={ m/2 delta + alpha ; alpha in Delta_0, m in Z} bigcup {m/2 delta ; m in Z }$ . And the root spaces are $hat{g}_{m/2 delta+ alpha}= C[phi ;m] otimes g_{alpha}$, for $alpha eq 0$ , $hat{g}_{m/2 delta}= C[phi ;m] otimes h_0$, for $m eq 0$, and $hat{g}_{0 delta}= hat{h}$, where $C[phi ;m]$ is the subspace with the homogeneous degree m. The Chevalley generators of $hat{sl}$ are given.



قيم البحث

اقرأ أيضاً

We determine the multiplicity of the irreducible representation V(n) of the simple Lie algebra sl(2,C) as a direct summand of its fourth exterior power $Lambda^4 V(n)$. The multiplicity is 1 (resp. 2) if and only if n = 4, 6 (resp. n = 8, 10). For th ese n we determine the multilinear polynomial identities of degree $le 7$ satisfied by the sl(2,C)-invariant alternating quaternary algebra structures obtained from the projections $Lambda^4 V(n) to V(n)$. We represent the polynomial identities as the nullspace of a large integer matrix and use computational linear algebra to find the canonical basis of the nullspace.
We prove the double bubble conjecture in the three-sphere $S^3$ and hyperbolic three-space $H^3$ in the cases where we can apply Hutchings theory: 1) in $S^3$, each enclosed volume and the complement occupy at least 10% of the volume of $S^3$; 2) in $H^3$, the smaller volume is at least 85% that of the larger. A balancing argument and asymptotic analysis reduce the problem in $S^3$ and $H^3$ to some computer checking. The computer analysis has been designed and fully implemented for both spaces.
83 - Tosiaki Kori 2021
Let L be the space of spinors on the 3-sphere that are the restrictions of the Laurent polynomial type harmonic spinors on C^2. L becomes an associative algebra. For a simple Lie algebra g, the real Lie algebra Lg generated by the tensor product of L and g is called the g-current algebra. The real part K of L becomes a commutative subalgebra of L. For a Cartan subalgebra h of g, h tensored by K becomes a Cartan subalgebra Kh of Lg. The set of non-zero weights of the adjoint representation of Kh corresponds bijectively to the root space of g. Let g=h+e+ f be the standard triangular decomposition of g, and let Lh, Le and Lf respectively be the Lie subalgebras of Lg generated by the tensor products of L with h, e and f respectively . Then we have the triangular decomposition: Lg=Lh+Le+Lf, that is also associated with the weight space decomposition of Lg. With the aid of the basic vector fields on the 3-shpere that arise from the infinitesimal representation of SO(3) we introduce a triple of 2-cocycles {c_k; k=0,1,2} on Lg. Then we have the central extension: Lg+ sum Ca_k associated to the 2-cocycles {c_k; k=0,1,2}. Adjoining a derivation coming from the radial vector field on S^3 we obtain the second central extension g^=Lg+ sum Ca_k + Cn. The root space decomposition of g^ as welll as the Chevalley generators of g^ will be given.
210 - Tosiaki Kori 2013
Let Omega^3(SU(n)) be the Lie group of based mappings from S^3 to SU(n). We construct a Lie group extension of Omega^3(SU(n)) for n>2 by the abelian group of the affine dual space of SU(n)-connections on S^3. In this article we give several improveme nt of J. Mickelssons results in 1987, especially we give a precise description of the extension of those components that are not the identity component,. We also correct several argument about the extension of Omega^3(SU(2)) which seems not to be exact in Mickelssons work, though his observation about the fact that the extension of Omega^3(SU(2)) reduces to the extension by Z_2 is correct. Then we shall investigate the adjoint representation of the Lie group extension of Omega^3(SU(n)) for n>2.
The main purpose of this paper is calculation of differential invariants which arise from prolonged actions of two Lie groups SL(2) and SL(3) on the $n$th jet space of $R^2$. It is necessary to calculate $n$th prolonged infenitesimal generators of the action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا