ﻻ يوجد ملخص باللغة العربية
The orbital motion of non-contact double-lined spectroscopic binaries (SB2), with periods of a few tens of days to several years, holds unique accurate informations on individual stellar masses, that only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 components masses down to the percent precision. Since 2010, we observed a large sample of SB2 with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1$%$ when the astrometric measurements of the Gaia satellite will be taken into account. In this paper we present the results from six years of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm we computed radial velocities from the spectra, and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with a sample average accuracy of 1.0$pm$0.2$,%$. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of respectively (2.0, 1.7)$,%$, (3.7, 3.7)$,%$, and (0.2, 0.1)$,%$. Using the Cesam2k stellar evolution code, we could constrain the initial He-abundance, age and metallicity for HIP 61100 and HIP 95995.
Double-lined spectroscopic binaries (SB2s) are one of the main sources of stellar masses, as additional observations are only needed to give the inclinations of the orbital planes in order to obtain the individual masses of the components. For this r
In anticipation of the Gaia astrometric mission, a large sample of spectroscopic binaries has been observed since 2010 with the SOPHIE spectrograph at the Haute--Provence Observatory. Our aim is to derive the orbital elements of double-lined spectros
The expected performance of GAIA satellite on eclipsing binaries is reviewed on the basis of (a) combined Hipparcos and ground-based observations mimicking GAIA data harvest, and (b) accurate simulations using the latest instrument model. It is found
We present results from Speckle inteferometric observations of fifteen visual binaries and one double-line spectroscopic binary, carried out with the HRCam Speckle camera of the SOAR 4.1 m telescope. These systems were observed as a part of an on-goi
Context: OB stars are important in the chemistry and evolution of the Universe, but the sample of targets well understood from an asteroseismological point of view is still too limited to provide feedback on the current evolutionary models. Our study