ﻻ يوجد ملخص باللغة العربية
We study the applicability of the time-dependent variational principle in matrix product state manifolds for the long time description of quantum interacting systems. By studying integrable and nonintegrable systems for which the long time dynamics are known we demonstrate that convergence of long time observables is subtle and needs to be examined carefully. Remarkably, for the disordered nonintegrable system we consider the long time dynamics are in good agreement with the rigorously obtained short time behavior and with previous obtained numerically exact results, suggesting that at least in this case the apparent convergence of this approach is reliable. Our study indicates that while great care must be exercised in establishing the convergence of the method, it may still be asymptotically accurate for a class of disordered nonintegrable quantum systems.
We use the time dependent variational matrix product state (tVMPS) approach to investigate the dynamical properties of the single impurity Anderson model (SIAM). Under the Jordan-Wigner transformation, the SIAM is reformulated into two spin-1/2 XY ch
We present a generalization of the Time Dependent Variational Principle (TDVP) to any finite sized loop-free tensor network. The major advantage of TDVP is that it can be employed as long as a representation of the Hamiltonian in the same tensor netw
We present a unified framework for renormalization group methods, including Wilsons numerical renormalization group (NRG) and Whites density-matrix renormalization group (DMRG), within the language of matrix product states. This allows improvements o
We present a new impurity solver for dynamical mean-field theory based on imaginary-time evolution of matrix product states. This converges the self-consistency loop on the imaginary-frequency axis and obtains real-frequency information in a final re
We derive an exact matrix product state representation of the Haldane-Rezayi state on both the cylinder and torus geometry. Our derivation is based on the description of the Haldane-Rezayi state as a correlator in a non-unitary logarithmic conformal