ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenology of neutron-antineutron conversion

56   0   0.0 ( 0 )
 نشر من قبل Susan Gardner
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the possibility of neutron-antineutron ($n-bar n$) conversion, in which the change of a neutron into an antineutron is mediated by an external source, as can occur in a scattering process. We develop the connections between $n-{bar n}$ conversion and $n-{bar n}$ oscillation, in which a neutron spontaneously tranforms into an antineutron, noting that if $n-{bar n}$ oscillation occurs in a theory with B-L violation, then $n-{bar n}$ conversion can occur also. We show how an experimental limit on $n-{bar n}$ conversion could connect concretely to a limit on $n-{bar n}$ oscillation, and vice versa, using effective field theory techniques and baryon matrix elements computed in the M.I.T. bag model.

قيم البحث

اقرأ أيضاً

The values of the antineutron-nucleus scattering lengths, and in particular their imaginary parts, are needed to evaluate the feasibility of using neutron mirrors in laboratory experiments to search for neutron-antineutron oscillations. We analyze ex isting experimental and theoretical constraints on these values with emphasis on low $A$ nuclei and use the results to suggest materials for the neutron/antineutron guide and to evaluate the systematic uncertainties in estimating the neutron-antineutron oscillation time. As an example we discuss a scenario for a future neutron-antineutron oscillation experiment proposed for the European Spallation Source. We also suggest future experiments which can provide a better determination of the values of antineutron-nuclei scattering lengths.
Two-loop anomalous dimensions and one-loop renormalization scheme matching factors are calculated for six-quark operators responsible for neutron-antineutron transitions. When combined with lattice QCD determinations of the matrix elements of these o perators, our results can be used to reliably predict the neutron-antineutron vacuum transition time, $tau_{nbar{n}}$, in terms of basic parameters of baryon-number violating beyond-the-Standard-Model theories. The operators are classified by their chiral transformation properties, and a basis in which there is no operator mixing due to strong interactions is identified. Operator projectors that are required for non-perturbative renormalization of the corresponding lattice QCD six-quark operator matrix elements are constructed. A complete calculation of $delta m = 1/tau_{nbar{n}}$ in a particular beyond-the-Standard-Model theory is presented as an example to demonstrate how operator renormalization and results from lattice QCD are combined with experimental bounds on $delta m$ to constrain the scale of new baryon-number violating physics. At the present computationally accessible lattice QCD matching scale of $sim$ 2 GeV, the next-to-next-to-leading-order effects calculated in this work correct the leading-order plus next-to-leading-order $delta m$ predictions of beyond-the-Standard-Model theories by $< 26%$. Next-to-next-to-next-to-leading-order effects provide additional unknown corrections to predictions of $delta m$ that are estimated to be $< 7%$.
This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron-antineutron oscillations, and suggests avenues for future improvement in the experimental sensitivity.
Fundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the Standard Model (BSM) explanations of the matter-antimatter asymmetry of the universe. Neutron-antineutron oscillations are predicted to be a signatur e of many baryogenesis mechanisms involving low-scale baryon number violation. This work presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on $|Delta B|=2$ baryon number violation in BSM theories. Several important systematic uncertainties are controlled by using a state-of-the-art lattice gauge field ensemble with physical quark masses and approximate chiral symmetry, performing nonperturbative renormalization with perturbative matching to the $overline{text{MS}}$ scheme, and studying excited state effects in two-state fits. Phenomenological implications are highlighted by comparing expected bounds from proposed neutron-antineutron oscillation experiments to predictions of a specific model of post-sphaleron baryogenesis. Quantum chromodynamics is found to predict at least an order of magnitude more events in neutron-antineutron oscillation experiments than previous estimates based on the MIT bag model for fixed BSM parameters. Lattice artifacts and other systematic uncertainties that are not controlled in this pioneering calculation are not expected to significantly change this conclusion.
In the analysis of neutron-antineutron oscillations, it has been recently argued in the literature that the use of the $igamma^{0}$ parity $n^{p}(t,-vec{x})=igamma^{0}n(t,-vec{x})$ which is consistent with the Majorana condition is mandatory and that the ordinary parity transformation of the neutron field $n^{p}(t,-vec{x}) = gamma^{0}n(t,-vec{x})$ has a difficulty. We show that a careful treatment of the ordinary parity transformation of the neutron works in the analysis of neutron-antineutron oscillations. Technically, the CP symmetry in the mass diagonalization procedure is important and the two parity transformations, $igamma^{0}$ parity and $gamma^{0}$ parity, are compensated for by the Pauli-Gursey transformation. Our analysis shows that either choice of the parity gives the correct results of neutron-antineutron oscillations if carefully treated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا