ترغب بنشر مسار تعليمي؟ اضغط هنا

Bianchi type-I Dust Filled Accelerating Brans- Dicke Cosmology

80   0   0.0 ( 0 )
 نشر من قبل Gopi Kant Goswami Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, spatially homogeneous and anisotropic Bianchi type-I cosmological models of Brans-Dicke theory of gravitation are investigated. The model represents accelerating universe at present and is considered to be dominated by dark energy. Cosmological constant $Lambda$ is considered as a candidate for the dark energy that has negative pressure and is responsible for the present acceleration. The derived model agrees at par with the recent SN Ia observations. We have set BD-coupling constant $omega$ to be ~$40000$, ~seeing the solar system tests and evidences. We have discussed the various physical and geometrical properties of the models and have compared them with the corresponding relativistic models.

قيم البحث

اقرأ أيضاً

In this paper, we investigate a transitioning model of Bianchi type V universe in Brans-Dicke theory of gravitation. The derived model not only validates Machs principle but also describes the present acceleration of the universe. In this paper, our aim is to constrain an exact Bianchi type V universe in Brans - Dicke gravity. For this sake, firstly we obtain an exact solution of field equations in modified gravity and secondly constrain the model parameters by bounding the model with recent $H(z)$ and Baryon acoustic oscillations (BAO) observational data. The current phase of accelerated expansion of the universe is also described by the contribution coming from cosmological constant screened scalar field with deceleration parameter showing a transition redshift of about $z_{t} = 0.79$. Some physical properties of the universe are also discussed.
48 - G. K. Goswami 2017
In this paper, we have investigated late time acceleration for a spatially flat dust filled Universe in Brans-Dicke theory in the presence of a positive cosmological constant $Lambda$ . Expressions for Hubbles constant, luminosity distance and appare nt magnitude have been obtained for our model. The theoretical results are compared with the observed values of the the latest 287 high red shift ($ .3 leq z leq 1.4$ ) SN Ia supernova datas taken from Union 2.1 compilation to estimate the present values of the matter and dark energy parameters $(Omega_{m})_0$ and $(Omega_{Lambda})_0$. We have also estimated the present value of Hubbles constant $H_0$ in the light of a updated sample of Hubble parameter measurements including 19 independent data points. The results are found to be in good agreement with recent astrophysical observations. We have also calculated various physical parameters such as the matter and dark energy densities, the present age of the universe and deceleration parameter. The value for BD-coupling constant $omega$ is set to be 40000 on the basis of accuracy of the solar system tests and recent experimental evidence.
In the context of generalised Brans-Dicke cosmology we use the Killing tensors of the minisuperspace in order to determine the unspecified potential of a scalar-tensor gravity theory. Specifically, based on the existence of contact symmetries of the field equations, we find four types of potentials which provide exactly integrable dynamical systems. We investigate the dynamical properties of these potentials by using a critical point analysis and we find solutions which lead to cosmic acceleration and under specific conditions we can have de-Sitter points as stable late-time attractors.
Using the Tsallis generalized entropy, holographic hypothesis and also considering the Hubble horizon as the IR cutoff, we build a holographic model for dark energy and study its cosmological consequences in the Brans-Dicke framework. At first, we fo cus on a non-interacting universe, and thereinafter, we study the results of considering a sign-changeable interaction between the dark sectors of the cosmos. Our investigations show that, compared with the flat case, the power and freedom of the model in describing the cosmic evolution is significantly increased in the presence of the curvature. The stability analysis also indicates that, independent of the universe curvature, both the interacting and non-interacting cases are classically unstable. In fact, both the classical stability criterion and an acceptable behavior for the cosmos quantities, including the deceleration and density parameters as well as the equation of state, are not simultaneously obtainable.
We extend recent discussions of singularity avoidance in quantum gravity from isotropic to anisotropic cosmological models. The investigation is done in the framework of quantum geometrodynamics (Wheeler-DeWitt equation). We formulate criteria of sin gularity avoidance for general Bianchi class A models and give explicit and detailed results for Bianchi I models with and without matter. We find that the classical singularities can generally be avoided in these models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا