ﻻ يوجد ملخص باللغة العربية
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number $n$ based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down conversion), linear optics, and photon detection. Arbitrary $d$-level (qudit) states can be created this way where $d=n+1$. Furthermore, we experimentally demonstrate our scheme for $n=2$. The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of $sqrt{n}-1$ losses and spanned by two logical codewords that each correspond to an $n$-photon superposition for two bosonic modes.
Using only linear optical elements, the creation of dual-rail photonic entangled states is inherently probabilistic. Known entanglement generation schemes have low success probabilities, requiring large-scale multiplexing to achieve near-deterministi
Heralding of single photon at 1550 nm from pump pulsed non degenerate spontaneous parametric downconversion is demonstrated. P(1) and P(2) of our source are 0.1871 and 2.4 x 10 ^-3 respectively. Triggering of our source is 2.16 x 10^5 trigger.s^-1. This source may be used in QKD system.
Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i
Miniaturised entangled photon sources are highly demanded for the development of integrated quantum photonics. Since the invention of subwavelength optical metasurfaces and their successes at replacing bulky optical components, the possibility of imp
Spontaneous parametric down conversion has been largely exploited as a tool for absolute calibration of photon counting detectors, photomultiplier tubes or avalanche photodiodes working in Geiger regime. In this work we investigate the extension of t