ترغب بنشر مسار تعليمي؟ اضغط هنا

The Flow Constraint Influence on the Properties of Nuclear Matter Critical Endpoint

67   0   0.0 ( 0 )
 نشر من قبل Kyrill Bugaev
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

قيم البحث

اقرأ أيضاً

The present work starts by providing a clear identification of correlations between critical parameters ($T_c$, $P_c$, $rho_c$) and bulk quantities at zero temperature of relativistic mean-field models (RMF) presenting third and fourth order self-int eractions in the scalar field $sigma$. Motivated by the nonrelativistic version of this RMF model, we show that effective nucleon mass ($M^*$) and incompressibility ($K_o$), at the saturation density, are correlated with $T_c$, $P_c$, and $rho_c$, as well as, binding energy and saturation density itself. We verify agreement of results with previous theoretical ones regarding different hadronic models. Concerning recent experimental data of the symmetric nuclear matter critical parameters, our study allows a prediction of $T_c$, $P_c$ and $rho_c$ compatible with such values, by combining them, through the correlations found, with previous constraints related to $M^*$ and $K_o$. An improved RMF parametrization, that better agrees with experimental values for $T_c$, is also indicated.
The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied using six different families of relativistic mean-field (RMF) models. The slopes of the symmetry energy coefficient vary ov er a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value ($T_csim$14-16 MeV). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near $T_c$, indicating that the warm equation of state of asymmetric nuclear matter at sub-saturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.
The use of the Boson Loop Expansion is proposed for investigating the static properties of nuclear matter. We explicitly consider a schematic dynamical model in which nucleons interact with the scalar-isoscalar sigma meson. The suggested approximatio n scheme is examined in detail at the mean field level and at the one- and two-loop orders. The relevant formulas are provided to derive the binding energy per nucleon, the pressure and the compressibility of nuclear matter. Numerical results of the binding energy at the one-loop order are presented for Waleckas sigma-omega model in order to discuss the degree of convergence of the Boson Loop Expansion.
100 - R. Ogul (GSI , Darmstadt , Germany 2002
The fragment production in multifragmentation of finite nuclei is affected by the critical temperature of nuclear matter. We show that this temperature can be determined on the basis of the statistical multifragmentation model (SMM) by analyzing the evolution of fragment distributions with the excitation energy. This method can reveal a decrease of the critical temperature that, e.g., is expected for neutron-rich matter. The influence of isospin on fragment distributions is also discussed.
254 - B.Krippa , 2000
The constraints imposed by chiral symmetry on hadron correlation functions in nuclear medium are discussed. It is shown that these constraints imply a certain structure for the in-medium hadron correlators and lead to the cancelation of the order $rh o m_pi$ term in the in-medium nucleon correlator. We also consider the effect of mixing of the chiral partners correlation functions arising from the interaction of nuclear pions with corresponding interpolating currents. It reflects the phenomena of partial restoration of chiral symmetry. The different scenarios of such restoration are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا