ﻻ يوجد ملخص باللغة العربية
Fully constrained bubble chamber data on the pp -> pi+ pn and pp -> pi+ d reactions are used to investigate the ratio of the counting rates for the two processes as function of the pn excitation energy Q. Though it is important to include effects associated with the p-wave nature of pion production, the data are insufficient to establish unambiguously the dependence on Q. The angular distributions show the presence of higher partial waves which seem to be anomalously large at small Q. The dispersion relation method to determine scattering lengths is extended to encompass cases where, as for the pp -> pi+ pn reaction, there is a bound state and, in a test example, it is shown that the values deduced for the low energy neutron-proton scattering parameters are significantly influenced by the pion p-wave behavior.
Fully constrained bubble chamber data on the pp -> pi+ pn and pp -> pi+ d reactions are used to investigate the ratio of the counting rates for the two processes at low pn excitation energies. Whereas the ratio is in tolerable agreement with that fou
In order to establish links between p-wave pion production in nucleon-nucleon collisions and low energy three-nucleon scattering, an extensive programme of experiments on pion production is currently underway at COSY-ANKE. The final proton pair is me
The cross section for prompt neutral and charged three pion production in pp interactions was measured at excess energies in the range 160 - 217 MeV. That comprises the first measurement of the pp->pp pi0pi0pi0 reaction and the comparison with the pp
The cross sections for the pp -> ppK+K- reaction were measured at three beam energies 2.65, 2.70, and 2.83 GeV at the COSY-ANKE facility. The shape of the K+K- spectrum at low invariant masses largely reflects the importance of Kbar{K} final state in
Evidence has recently been presented for the existence of a dibaryon of mass 2380 MeV/c^2 and width 70 MeV/c^2, which decays strongly into the d pi0 pi0 channel [M. Bashkanov et al., Phys.Rev.Lett. 102 (2009) 052301; P. Adlarson et al., arXiv:1104.01