ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Abelian vortex lattices

94   0   0.0 ( 0 )
 نشر من قبل Adam Peterson
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a numerical study of the phase diagram of the model proposed in cite{Shifman:2012vv}, which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of $CP(1)$ theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.



قيم البحث

اقرأ أيضاً

We study a fully back-reacted non-abelian vortex solution in an extension of the holographic superconductor setup. The thermodynamic properties of the vortex are computed. We show that, in some regime of parameters, the non-abelian vortex solution ha s a lower free energy than a competing abelian vortex solution. The solution is dual to a finite-temperature perturbed conformal field theory with a topological defect, on which operators related to the Goldstone modes of a spontaneously broken symmetry are localized. We compute numerically the retarded Green function of these operators and we find, in the classical approximation in the bulk, a gapless $mathbb{CP}^1$ excitation on the vortex world line.
130 - Lu-Xin Liu , Muneto Nitta 2009
The dynamics of the non-Abelian vortex-string, which describes its low energy oscillations into the target $D=3+1$ spacetime as well as its orientations in the internal space, is derived by the approach of nonlinear realization. The resulting action correlating these two sectors is found to have an invariant synthesis form of the Nambu-Goto-${bf C}P^{N-1}$ model actions. Higher order corrections to the vortex actions are presented up to the order of quartic derivatives. General $p$-brane dynamics in terms of the internal symmetry breaking is also discussed.
We investigate the flux-tube joining two equal and opposite electric charges using the dual Ginzburg-Landau model of superconductivity. The model is supplemented with an additional scalar field carrying a non-Abelian global symmetry, broken in the vo rtex cores. The presence of orientational moduli makes the flux tube non-Abelian. We perform a detailed study of the low energy theory of this soliton. We also analyze the solution representing superconducting droplets in the presence of the monopole anti - monopole pair.
The use of coherent optical dressing of atomic levels allows the coupling of ultracold atoms to effective gauge fields. These can be used to generate effective magnetic fields, and have the potential to generate non-Abelian gauge fields. We consider a model of a gas of bosonic atoms coupled to a gauge field with U(2) symmetry, and with constant effective magnetic field. We include the effects of weak contact interactions by applying Gross-Pitaevskii mean-field theory. We study the effects of a U(2) non-Abelian gauge field on the vortex lattice phase induced by a uniform effective magnetic field, generated by an Abelian gauge field or, equivalently, by rotation of the gas. We show that, with increasing non-Abelian gauge field, the nature of the groundstate changes dramatically, with structural changes of the vortex lattice. We show that the effect of the non-Abelian gauge field is equivalent to the introduction of effective interactions with non-zero range. We also comment on the consequences of the non-Abelian gauge field for strongly correlated fractional quantum Hall states.
105 - Arata Yamamoto 2018
We perform the Monte Carlo study of the SU(3) non-Abelian Higgs model. We discuss phase structure and non-Abelian vortices by gauge invariant operators. External magnetic fields induce non-Abelian vortices in the color-flavor locked phase. The spatia l distribution of non-Abelian vortices suggests the repulsive vortex-vortex interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا