ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy evolution in groups. NGC 3447/NGC 3447A: the odd couple in LGG 225

94   0   0.0 ( 0 )
 نشر من قبل Paola Mazzei
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paola Mazzei




اسأل ChatGPT حول البحث

Local Group Analogs (LGA) are galaxy associations dominated by few bright Spirals, reminiscent of the LG. The NGC3447/NGC3447A system, member of the LGG 225 group, a nearby LGA, is considered a physical pair: an intermediate luminosity late type spiral, NGC3447, and an irregular companion, NGC3447A, linked by a faint filament of matter. A ring-like structure in the NGC3447 outskirts is emphasised by UV observations. This work aims to contribute to the understanding of galaxy evolution in low density environments, favourable habitat to highly effective encounters. We performed a multi-wavelength analysis of the surface photometry of this system to derive spectral energy distribution and structural properties using UV and optical images. We also characterised the velocity field of the pair using new kinematic observations. All these data are used to constrain smooth particle hydrodynamic simulations with chemo-photometric implementation to shed light on the evolution of this system. Luminosity profiles are all consistent with the presence of a disc extending and including NGC3447A. The overall velocity field does not emphasise any significant rotation pattern, rather a small velocity gradient between NGC3447 and NGC3447A. Our simulation, detached from a large grid explored to best-fit the global properties of the system, suggests that this arises from an encounter between two halos of equal mass. NGC3447 and NGC3447A belong to the same halo, NGC3447A being a substructure of the same disk as NGC3447. The halo gravitational instability, enhanced by the encounter, fuels a long lived instability in this dark matter dominated disk, driving its morphology. This system may warn about a new class of false pairs and the potential danger of a misunderstanding of such objects in pair surveys that could produce a severe underestimate of the total mass of the system. (abridged)


قيم البحث

اقرأ أيضاً

We explore the co-evolution of galaxies in nearby groups (V < 3000 km/s) with a multi-wavelength approach. We analyze GALEX far-UV (FUV) and near-UV (NUV) imaging and SDSS u,g,r,i,z data of groups spanning a large range of dynamical phases. We charac terize the photometric properties of spectroscopically-confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here we focus on NGC 5846, the third most massive association of Early-Type Galaxies (ETG) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40% are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 resembles that of the Virgo cluster, however our analysis suggests that star-formation episodes are still occurring in most of the group galaxies, including ETGs. The NUV-i colour distribution, the optical-UV colour-colour diagram, and NUV-r vs. Mr colour-magnitude relation suggest that the gas contribution cannot be neglected in the evolution of ETG-type group members. Our analysis highlights that NGC~5846 is still in an active phase of its evolution, notwithstanding the dominance of dwarf and bright ETGs and its virialized configuration.
53 - Scott Tremaine 2014
Quasars emit more energy than any other objects in the universe, yet are not much bigger than the solar system. We are almost certain that quasars are powered by giant black holes of up to $10^{10}$ times the mass of the Sun, and that black holes of between $10^6$ and $10^{10}$ solar masses---dead quasars---are present at the centers of most galaxies. Our own galaxy contains a black hole of $4.3times10^6$ solar masses. The mass of the central black hole appears to be closely related to other properties of its host galaxy, such as the total mass in stars, but the origin of this relation and the role that black holes play in the formation of galaxies are still mysteries.
We present the results of CCD $UBV$ photometric and spectroscopic observations of the open cluster NGC 225. In order to determine the structural parameters of NGC 225, we calculated the stellar density profile in the clusters field. We estimated the probabilities of the stars being physical members of the cluster using the existing astrometric data. The most likely members of the cluster were used in the determination of the astrophysical parameters of the cluster. We calculated the mean radial velocity of the cluster as $V_{r}=-8.3pm 5.0$ km s$^{-1}$ from the optical spectra of eight stars in the clusters field. Using the U-B vs B-V two-colour diagram and UV excesses of the F-G type main-sequence stars, the reddening and metallicity of NGC 225 were inferred as $E(B-V)=0.151pm 0.047$ mag and $[Fe/H]=-0.11pm 0.01$ dex, respectively. We fitted the colour-magnitude diagrams of NGC 225 with the PARSEC isochrones and derived the distance modulus, distance and age of the cluster as $mu_{V}=9.3pm 0.07$ mag, d=585$pm$20 pc and $t=900pm 100$ Myr, respectively. We also estimated the galactic orbital parameters and space velocity components of the cluster and found that the cluster has a slightly eccentric orbit of $e=0.07pm 0.01$ and an orbital period of $P_{orb}= 255pm 5$ Myr.
173 - Olga K. Silchenko 2012
By means of panoramic spectroscopy at the SAO RAS BTA telescope, we investigated the properties of stellar populations in the central regions of five early-type galaxies -- the NGC 524 group members. The evolution of the central regions of galaxies l ooks synchronized: the average age of stars in the bulges of all the five galaxies lies in the range of 3--6 Gyr. Four of the five galaxies revealed synchronized bursts of star formation in the nuclei 1--2 Gyr ago. The only galaxy, in which the ages of stellar population in the nucleus and in the bulge coincide (i.e. the nuclear burst of star formation did not take place) is NGC 502, the farthest from the center of the group of all the galaxies studied.
229 - Ronin Wu 2018
We present the analysis of the Unidentified Infrared Bands (UIB) in the starburst galaxy NGC 1097. We have combined spectral maps observed with the AKARI/IRC and Spitzer/IRS instruments, in order to study all of the most prominent UIBs, from 3 to 20 micron. Such a complete spectral coverage is crucial to remove the common degeneracies between the effects of the variations of the size distribution and of the charge state of the grains. By studying several UIB ratios, we show evidence that the average size of the UIB carriers is larger in the central region than in the circumnuclear ring. We interpret this result as the selective destruction of the smallest grains by the hard radiation from the central active galactic nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا