ترغب بنشر مسار تعليمي؟ اضغط هنا

Design & development of position sensitive detector for hard X-ray using SiPM and new generation scintillators

110   0   0.0 ( 0 )
 نشر من قبل Tanmoy Chattopadhyay
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is growing interest in high-energy astrophysics community for the development of sensitive instruments in the hard X-ray energy extending to few hundred keV. This requires position sensitive detector modules with high efficiency in the hard X-ray energy range. Here, we present development of a detector module, which consists of 25 mm x 25 mm CeBr3 scintillation detector, read out by a custom designed two dimensional array of Silicon Photo-Multipliers (SiPM). Readout of common cathode of SiPMs provides the spectral measurement whereas the readout of individual SiPM anodes provides measurement of interaction position in the crystal. Preliminary results for spectral and position measurements with the detector module are presented here.



قيم البحث

اقرأ أيضاً

Improvements of in-orbit calibration of GSO scintillators in the Hard X-ray Detector on board Suzaku are reported. To resolve an apparent change of the energy scale of GSO which appeared across the launch for unknown reasons, consistent and thorough re-analyses of both pre-launch and in-orbit data have been performed. With laboratory experiments using spare hardware, the pulse height offset, corresponding to zero energy input, was found to change by ~0.5 of the full analog voltage scale, depending on the power supply. Furthermore, by carefully calculating all the light outputs of secondaries from activation lines used in the in-orbit gain determination, their energy deposits in GSO were found to be effectively lower, by several percent, than their nominal energies. Taking both these effects into account, the in-orbit data agrees with the on-ground measurements within ~5%, without employing the artificial correction introduced in the previous work (Kokubun et al. 2007). With this knowledge, we updated the data processing, the response, and the auxiliary files of GSO, and reproduced the HXD-PIN and HXD-GSO spectra of the Crab Nebula over 12-300 keV by a broken powerlaw with a break energy of ~110 keV.
We present preliminary characterization of the Speedster-EXD, a new event driven hybrid CMOS detector (HCD) developed in collaboration with Penn State University and Teledyne Imaging Systems. HCDs have advantages over CCDs including lower susceptibil ity to radiation damage, lower power consumption, and faster read-out time to avoid pile-up. They are deeply depleted and able to detect x-rays down to approximately 0.1 keV. The Speedster-EXD has additional in-pixel features compared to previously published HCDs including: (1) an in-pixel comparator that enables read out of only the pixels with signal from an x-ray event, (2) four different gain modes to optimize either full well capacity or energy resolution, (3) in-pixel CDS subtraction to reduce read noise, and (4) a low-noise, high-gain CTIA amplifier to eliminate interpixel capacitance crosstalk. When using the comparator feature, the user can set a comparator threshold and only pixels above the threshold will be read out. This feature can be run in two modes including single pixel readout in which only pixels above the threshold are read out and 3x3 readout where a 3x3 region centered on the central pixel of the x-ray event is read out. The comparator feature of the Speedster-EXD increases the detector array effective frame rate by orders of magnitude. The new features of the Speedster-EXD hybrid CMOS x-ray detector are particularly relevant to future high throughput x-ray missions requiring large-format silicon imagers.
A prototype of a position sensitive photo-detector with 5.6 x 5.6 cm2 detection area readout with 64 Hamamatsu MPPCs (S10931-100P) with 3 x 3 mm2 active area each has been built and tested. The photo-sensors are arranged in a 8 x 8 array with a quadr atic mirror light guide on top. The module is currently readout by in-house developed preamplifier boards but employing existing ASIC chips optimized for SiPM readout is also planned. Such a device is one of the candidates to be used for photon detection in the PANDA DIRC detectors.
We have been developing monolithic active pixel sensors, known as Kyotos X-ray SOIPIXs, based on the CMOS SOI (silicon-on-insulator) technology for next-generation X-ray astronomy satellites. The event trigger output function implemented in each pixe l offers microsecond time resolution and enables reduction of the non-X-ray background that dominates the high X-ray energy band above 5--10 keV. A fully depleted SOI with a thick depletion layer and back illumination offers wide band coverage of 0.3--40 keV. Here, we report recent progress in the X-ray SOIPIX development. In this study, we achieved an energy resolution of 300~eV (FWHM) at 6~keV and a read-out noise of 33~e- (rms) in the frame readout mode, which allows us to clearly resolve Mn-K$alpha$ and K$beta$. Moreover, we produced a fully depleted layer with a thickness of $500~{rm mu m}$. The event-driven readout mode has already been successfully demonstrated.
X-ray Charge Coupled Devices (CCDs) have been the workhorse for soft X-ray astronomical instruments for the past quarter century. They provide broad energy response, extremely low electronic read noise, and good energy resolution in soft X-rays. Thes e properties, along with the large arrays and small pixel sizes available with modern-day CCDs, make them a potential candidate for next generation astronomical X-ray missions equipped with large collecting areas, high angular resolutions and wide fields of view, enabling observation of the faint, diffuse and high redshift X-ray universe. However, such high collecting area (about 30 times Chandra) requires these detectors to have an order of magnitude faster readout than current CCDs to avoid saturation and pile up effects. In this context, Stanford University and MIT have initiated the development of fast readout X-ray cameras. As a tool for this development, we have designed a fast readout, low noise electronics board (intended to work at a 5 Megapixel per second data rate) coupled with an STA Archon controller to readout a 512 x 512 CCD (from MIT Lincoln Laboratory). This versatile setup allows us to study a number of parameters and operation conditions including the option for digital shaping. In this paper, we describe the characterization test stand, the concept and development of the readout electronics, and simulation results. We also report the first measurements of read noise, energy resolution and other parameters from this set up. While this is very much a prototype, we plan to use larger, multi-node CCD devices in the future with dedicated ASIC readout systems to enable faster, parallel readout of the CCDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا