ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of CdCl$_2$ treatment on the local electronic properties of polycrystalline CdTe measured with photoemission electron microscopy

224   0   0.0 ( 0 )
 نشر من قبل Calvin Chan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To investigate the effects of CdCl$_2$ treatment on the local electronic properties of polycrystalline CdTe films, we conducted a photoemission electron microscopy (PEEM) study of polished surfaces of CdTe films in superstrate configuration, with and without CdCl$_2$ treatment. From photoemission intensity images, we observed the tendency for individual exposed grain interiors to vary in photoemission intensity, regardless of whether or not films received CdCl$_2$ treatment. Additionally, grain boundaries develop contrast in photoemission intensity images different from grain interiors after an air exposure step, similar to observations of activated grain boundaries using scanning Kelvin probe force microscopy studies. These results suggest that work function varies locally, from one grain interior to another, as well as between grain boundaries and grain interiors.



قيم البحث

اقرأ أيضاً

Post-deposition CdCl$_2$ treatment of polycrystalline CdTe is known to increase photovoltaic efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this study, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries. In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl$_2$ treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grain interiors, but only after air exposure of CdCl$_2$-treated CdTe. Analysis of numerous space charge regions at grain boundaries (GBs) showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 10$^{11}$ cm$^{-2}$ and a net carrier density of 10$^{15}$ cm$^{-3}$. These results suggest that both CdCl$_2$ treatment and oxygen exposure may be independently tuned to enhance CdTe photovoltaic performance by engineering the interface and bulk electronic structure.
With rapidly growing photoconversion efficiencies, hybrid perovskite solar cells have emerged as promising contenders for next generation, low-cost photovoltaic technologies. Yet, the presence of nanoscale defect clusters, that form during the fabric ation process, remains critical to overall device operation, including efficiency and long-term stability. To successfully deploy hybrid perovskites, we must understand the nature of the different types of defects, assess their potentially varied roles in device performance, and understand how they respond to passivation strategies. Here, by correlating photoemission and synchrotron-based scanning probe X-ray microscopies, we unveil three different types of defect clusters in state-of-the-art triple cation mixed halide perovskite thin films. Incorporating ultrafast time-resolution into our photoemission measurements, we show that defect clusters originating at grain boundaries are the most detrimental for photocarrier trapping, while lead iodide defect clusters are relatively benign. Hexagonal polytype defect clusters are only mildly detrimental individually, but can have a significant impact overall if abundant in occurrence. We also show that passivating defects with oxygen in the presence of light, a previously used approach to improve efficiency, has a varied impact on the different types of defects. Even with just mild oxygen treatment, the grain boundary defects are completely healed, while the lead iodide defects begin to show signs of chemical alteration. Our findings highlight the need for multi-pronged strategies tailored to selectively address the detrimental impact of the different defect types in hybrid perovskite solar cells.
We study the effect of quantum vibronic coupling on the electronic properties of carbon allotropes, including molecules and solids, by combining path integral first principles molecular dynamics (FPMD) with a colored noise thermostat. In addition to avoiding several approximations commonly adopted in calculations of electron-phonon coupling, our approach only adds a moderate computational cost to FPMD simulations and hence it is applicable to large supercells, such as those required to describe amorphous solids. We predict the effect of electron-phonon coupling on the fundamental gap of amorphous carbon, and we show that in diamond the zero-phonon renormalization of the band gap is larger than previously reported.
Group-VI monochalcogenides are attracting a great deal of attention due to their peculiar anisotropic properties. Very recently, it has been suggested that GeS could act as a promissory absorbing material with high input-output ratios, relevant featu res for designing prospective optoelectronic devices. In this work, we use the emph{ab-initio} many body perturbation theory to study the role of the electron-phonon coupling on orthorhombic GeS. We identify the vibrational modes that efficiently couple with the electronic states responsible for giving rise to the first and second excitonic state. We also study the finite-temperature optical absorption and show that even at $Tto0K$, the role of the electron-phonon interaction is crucial to properly describe the main experimental excitation peaks position and width. Our results suggest that the electron-phonon coupling is essential to properly describe the optical properties of the monochalcogenides family.
Chemically exfoliated nanoscale few-layer thin Li$_x$CoO$_2$ samples are studied as function of annealing at various temperatures, using transmission electron microscopy (TEM) and Electron Energy Loss Spectroscopies (EELS), probing the O-K, Co-L$_{2, 3}$ spectra along with low energy interband transitions. These spectra are compared with first-principles DFT calculations of -Im$[varepsilon^{-1}(q,omega)]$ and O-2p Partial Densities of States weighted by dipole matrix elements with the core wavefunction and including the O-1s core-hole and with known trends of the L$_2$/L$_3$ peak ratio to average Co valence. Trends in these spectra under the annealing procedures are established and correlated with the structural phase changes observed from diffraction TEM and High Resolution TEM images. The results are also correlated with conductivity measurements on samples subjected to the same annealing procedures. A gradual disordering of the Li and Co cations in the lattice is observed starting from a slight distortion of the pure LiCoO$_2$ $Rbar{3}m$ to $C2/m$ due to the lower Li content, followed by a $P2/m$ phase forming at 200$^o$C indicative of Li-vacancy ordering, formation of a spinel type $Fdbar{3}m$ phase around 250$^o$C and ultimately a rocksalt type $Fmbar{3}m$ phase above 350$^o$C. This disordering leads to a lowering of the band gap as established by low energy EELS. The O-K spectra of the rocksalt phase are only reproduced by a calculation for pure CoO and not for a model with random distribution of Li and Co. This indicates that there may be a loss of Li from the rocksalt regions of the sample at these higher temperatures. The conductivity measurements indicate a gradual drop in conductivity above 200$^o$C, which is clearly related to the more Li-Co interdiffused phases, in which a low-spin electronic structure is no longer valid and stronger correlation effects are expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا