ﻻ يوجد ملخص باللغة العربية
We propose a novel method to search for the chiral magnetic effect (CME) in heavy ion collisions. We argue that the relative strength of the magnetic field (mainly from spectator protons and responsible for the CME) with respect to the reaction plane and the participant plane is opposite to that of the elliptic flow background arising from the fluctuating participant geometry. This opposite behavior in a single collision system, hence with small systematic uncertainties, can be exploited to extract the possible CME signal from the flow background. The method is applied to the existing data at RHIC, the outcome of which is discussed.
It is proposed to identify a strong electric field - created during relativistic collisions of asymmetric nuclei - via the observation of pseudorapidity and transverse momentum distributions of hadrons with the same mass but opposite charge. The resu
High-energy nucleus-nucleus collisions are studied in multi-chain model with successive collision. Analytic forms for single-particle distribution are derived.
The number of particles detected in a nucleus-nucleus collision strongly depends on the impact parameter of the collision. Therefore, multiplicity fluctuations, as well as rapidity correlations of multiplicities, are dominated by impact parameter flu
The space-time structure of the multipion system created in central relativistic heavy-ion collisions is investigated. Using the microscopic transport model UrQMD we determine the freeze-out hypersurface from equation on pion density n(t,r)=n_c. It t
We investigate hadron production as well as transverse hadron spectra in nucleus-nucleus collisions from 2 $Acdot$GeV to 21.3 $Acdot$TeV within two independent transport approaches (UrQMD and HSD) that are based on quark, diquark, string and hadronic