ﻻ يوجد ملخص باللغة العربية
The strength of the spin-orbit interaction relevant to transport in a low dimensional structure depends critically on the relative geometrical arrangement of current carrying orbitals. Recent tight-binding orbital models for spin transport in DNA-like molecules, have surmised that the band spin-orbit coupling arises from the particular angular relations between orbitals of neighboring bases on the helical chain. Such arrangement could be probed by inducing deformations in the molecule in a conductive probe AFM type setup, as it was recently reported by Kiran, Cohen and Naamancite{Kiran}. Here we report deformation dependent spin selectivity when a double strand DNA model is compressed or stretched. We find that the equilibrium geometry is not optimal with respect to the SO coupling strength and thus spin selectivity can be tuned by deformations. The latter can be increased by stretching the helical structure taking into account its elastic properties through the Poisson ratio. The spin filtering gap is also found to be tunable with uniaxial deformations.
Electron transfer (ET) in biological molecules such as peptides and proteins consists of electrons moving between well defined localized states (donors to acceptors) through a tunneling process. Here we present an analytical model for ET by tunneling
Organic materials are known to feature long spin-diffusion times, originating in a generally small spin-orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle, that attracted
The theoretical explanation for the chiral-induced spin selectivity effect, in which electrons passage through a chiral system depends on their spin and the handedness of the system, remains vague. Although most experimental work was performed at roo
We report a new type of spin-orbit coupling (SOC) called geometric SOC. Starting from the relativistic theory in curved space, we derive an effective nonrelativistic Hamiltonian in a generic curve embedded into flat three dimensions. The geometric SO
We analyse the appearance of a mechanical torque that acts on a chiral molecule: a single-stranded DNA, in which the spin-orbit interaction is expected to induce a spin-selectivity effect. The mechanical torque is shown to appear as a result of the n