ﻻ يوجد ملخص باللغة العربية
A wind nebula generating extended X-ray emission was recently detected surrounding Swift 1834.9-0846. This is the first magnetar for which such a (pulsar) wind nebula (PWN) was found. I demonstrate that Swift 1834.9-0846s nebula can be rotationally-powered if it is being compressed by the environment. The physical reason behind this is the dominance of adiabatic heating over all other cooling and escape processes. This effect can happen only for pulsars of relatively low spin-down power and can make for very efficient nebulae. This contribution is based on previous work published in ApJ 835, article id. 54, 13 pp. (2017).
Magnetars are one of the potential power sources for some energetic supernova explosions such as type I superluminous supernovae (SLSNe I) and broad-lined type Ic supernovae (SNe Ic-BL). In order to explore the possible link between these two subclas
A rapidly spinning magnetar in a young supernova (SN) can produce a superluminous transient by converting a fraction of its rotational energy into radiation. Here, we present the first three-dimensional hydrodynamical simulations ever performed of a
A rapidly rotating neutron star with strong magnetic fields, called magnetar, is a possible candidate for the central engine of long gamma-ray bursts and hypernovae (HNe). We solve the evolution of a shock wave driven by the wind from magnetar and ev
Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the
Nascent neutron stars with millisecond periods and magnetic fields in excess of $10^{16}$ Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for