ﻻ يوجد ملخص باللغة العربية
The role of scalable high-performance workflows and flexible workflow management systems that can support multiple simulations will continue to increase in importance. For example, with the end of Dennard scaling, there is a need to substitute a single long running simulation with multiple repeats of shorter simulations, or concurrent replicas. Further, many scientific problems involve ensembles of simulations in order to solve a higher-level problem or produce statistically meaningful results. However most supercomputing software development and performance enhancements have focused on optimizing single- simulation performance. On the other hand, there is a strong inconsistency in the definition and practice of workflows and workflow management systems. This inconsistency often centers around the difference between several different types of workflows, including modeling and simulation, grid, uncertainty quantification, and purely conceptual workflows. This work explores this phenomenon by examining the different types of workflows and workflow management systems, reviewing the perspective of a large supercomputing facility, examining the common features and problems of workflow management systems, and finally presenting a proposed solution based on the concept of common building blocks. The implications of the continuing proliferation of workflow management systems and the lack of interoperability between these systems are discussed from a practical perspective. In doing so, we have begun an investigation of the design and implementation of open workflow systems for supercomputers based upon common components.
With the advances in e-Sciences and the growing complexity of scientific analyses, more and more scientists and researchers are relying on workflow systems for process coordination, derivation automation, provenance tracking, and bookkeeping. While w
This work proposes a quantitative metric to analyze potential reusability of a BPEL (Business Process Execution Language) Process. The approach is based on Description and Logic Mismatch Probability of a BPEL Process that will be reused within potent
Eliciting scalability requirements during agile software development is complicated and poorly described in previous research. This article presents a lightweight artifact for eliciting scalability requirements during agile software development: the
Scientific workflow management systems offer features for composing complex computational pipelines from modular building blocks, for executing the resulting automated workflows, and for recording the provenance of data products resulting from workfl
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemissi