ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

85   0   0.0 ( 0 )
 نشر من قبل Antonella Palmese
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of NGC 4993, the host galaxy of the GW170817 gravitational wave event, the GRB170817A short gamma-ray burst (sGRB) and the AT2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC4993 is a nearby (40 Mpc) early-type galaxy, with $i$-band Sersic index $n=4.0$ and low asymmetry ($A=0.04pm 0.01$). These properties are unusual for sGRB hosts. However, NGC4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially-resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as $R_{NSM}^{gal}= 5.7^{+0.57}_{-3.3} times 10^{-6} {rm yr}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $0.038^{+0.004}_{-0.022}$, as opposed to $sim 0.5$ from all galaxy types. Hypothesizing that the binary system formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred $t_{rm mer}lesssim 200~{rm Myr}$ prior to the BNS coalescence.



قيم البحث

اقرأ أيضاً

85 - Myungshin Im 2017
Recently, the optical counterpart of a gravitational wave source GW170817 has been identified in NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron s tars. We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with reff ~ 2-3 kpc and the Sersic index of n = 3-4 for the bulge component. The spectral energy distribution from 0.15 to 24 micron indicates that this galaxy has no significant ongoing star formation, the mean stellar mass of (0.3 - 1.2) times 10^11 Msun,the mean stellar age greater than ~3 Gyr, and the metallicity of about 20% to 100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from literature, finding an angular diameter distance of 37.7 +- 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts but much different from those of long gamma-ray bursts, supporting the picture of GW170817 as a result of a merger of two NSs.
The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be $sim$10 from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift ($z_{rm helio}=0.009783pm0.000023$) we infer the systemic recession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be $v_{rm CMB}=3231 pm 53$ km s$^{-1}$. Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be $v_{rm pec}=307 pm 230$ km s$^{-1}$, resulting in a cosmic velocity of $v_{rm cosmic}=2924 pm 236$ km s$^{-1}$ ($z_{rm cosmic}=0.00980pm 0.00079$) and a distance of $D_z=40.4pm 3.4$ Mpc assuming a local Hubble constant of $H_0=73.24pm 1.74$ km s$^{-1}$ Mpc$^{-1}$. (2) Using Hubble Space Telescope measurements of the effective radius (15.5 $pm$ 1.5) and contained intensity and MUSE/VLT measurements of the velocity dispersion, we place NGC 4993 on the Fundamental Plane (FP) of E and S0 galaxies. Comparing to a frame of 10 clusters containing 226 galaxies, this yields a distance estimate of $D_{rm FP}=44.0pm 7.5$ Mpc. The combined redshift and FP distance is $D_{rm NGC 4993}= 41.0pm 3.1$ Mpc. This electromagnetic distance estimate is consistent with the independent measurement of the distance to GW170817 as obtained from the gravitational-wave signal ($D_{rm GW}= 43.8^{+2.9}_{-6.9}$ Mpc) and confirms that GW170817 occurred in NGC 4993.
We present Hubble Space Telescope and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational wave emission by LIGO & V irgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z=0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (<1 Gyr) ``dry merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with <1% of any light arising from a population with ages <500 Myr. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (r_e ~ 3 kpc), providing an r_e-normalized offset that is closer than ~90% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy.
OB associations are the prevailing star forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, al though a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the timescale of sequential star formation is about 1 Myr within a 9 parsec distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.
On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was asso ciated with the early-type galaxy NGC 4993 at a distance of just $sim$40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of $sim$2 kpc away from the galaxys center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from the binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxys star formation history, provided the stellar populations are older than 1 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا