ﻻ يوجد ملخص باللغة العربية
We apply the analytic conformal bootstrap method to study weakly coupled conformal gauge theories in four dimensions. We employ twist conformal blocks to find the most general form of the one-loop four-point correlation function of identical scalar operators, without any reference to Feynman calculations. The method relies only on symmetries of the model. In particular, it does not require introducing any regularisation and it is free from the redundancies usually associated with the Feynman approach. By supplementing the general solution with known data for a small number of operators, we recover explicit forms of one-loop correlation functions of four Konishi operators as well as of four half-BPS operators $mathcal{O}_{20}$ in $mathcal{N}=4$ super Yang-Mills.
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen
We show how to compute conformal blocks of operators in arbitrary Lorentz representations using the formalism described in arXiv:1905.00036 and arXiv:1905.00434, and present several explicit examples of blocks derived via this method. The procedure f
In this work we apply the lightcone bootstrap to a four-point function of scalars in two-dimensional conformal field theory. We include the entire Virasoro symmetry and consider non-rational theories with a gap in the spectrum from the vacuum and no
We show how to construct embedding space three-point functions for operators in arbitrary Lorentz representations by employing the formalism developed in arXiv:1905.00036 and arXiv:1905.00434. We study tensor structures that intertwine the operators
We compute the most general embedding space two-point function in arbitrary Lorentz representations in the context of the recently introduced formalism in arXiv:1905.00036 and arXiv:1905.00434. This work provides a first explicit application of this