ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of bulk-interface contributions to Edelstein magnetoresistance at metal/oxide interfaces

139   0   0.0 ( 0 )
 نشر من قبل Junyeon Kim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a systematic study on Edelstein magnetoresistance (Edelstein MR) in Co25Fe75/Cu/Bi2O3 heterostructures with a strong spin-orbit interaction at the Cu/Bi2O3 interface. We succeed in observing a significant dependence of the Edelstein MR on both Cu layer thickness and temperature, and also develop a general analytical model considering distinct bulk and interface contributions on spin relaxation. Our analysis, based on the above model, quantitatively illustrates a unique property of the spin transport near the Rashba interface, revealing a prominent role of the spin relaxation process by determining the ratios of the spin relaxation inside and outside the interface. We further find the characteristic spin transport is unaffected by temperature. Our results provide an essential tool for exploring the transport in a system with spin-momentum-locked two-dimensional states.

قيم البحث

اقرأ أيضاً

228 - N. Lebedev , M. Stehno , A. Rana 2020
We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, Transmission Electron Microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the 2-dimensional electron gas usually observed at interfaces between SrTiO3 and LaTiO3 or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates presence of a spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
We investigate the absorption of a spin current at a ferromagnetic-metal/Pt-oxide interface by measuring current-induced ferromagnetic resonance. The spin absorption was characterized by the magnetic damping of the heterostructure. We show that the m agnetic damping of a Ni$_{81}$Fe$_{19}$ film is clearly enhanced by attaching Pt-oxide on the Ni$_{81}$Fe$_{19}$ film. The damping enhancement is disappeared by inserting an ultrathin Cu layer between the Ni$_{81}$Fe$_{19}$ and Pt-oxide layers. These results demonstrate an essential role of the direct contact between the Ni$_{81}$Fe$_{19}$ and Pt-oxide to induce sizable interface spin-orbit coupling. Furthermore, the spin-absorption parameter of the Ni$_{81}$Fe$_{19}$/Pt-oxide interface is comparable to that of intensively studied heterostructures with strong spin-orbit coupling, such as an oxide interface, topological insulators, metallic junctions with Rashba spin-orbit coupling. This result illustrates strong spin-orbit coupling at the ferromagnetic-metal/Pt-oxide interface, providing an important piece of information for quantitative understanding the spin absorption and spin-charge conversion at the ferromagnetic-metal/metallic-oxide interface.
In systems near phase transitions, macroscopic properties often follow algebraic scaling laws, determined by the dimensionality and the underlying symmetries of the system. The emergence of such universal scaling implies that microscopic details are irrelevant. Here, we locally investigate the scaling properties of the metal-insulator transition at the LaAlO3/SrTiO3 interface. We show that, by changing the dimensionality and the symmetries of the electronic system, coupling between structural and electronic properties prevents the universal behavior near the transition. By imaging the current flow in the system, we reveal that structural domain boundaries modify the filamentary flow close to the transition point, preventing a fractal with the expected universal dimension from forming. Our results offer a generic platform to engineer electronic transitions on the nanoscale.
Complex oxide interfaces are a promising platform for studying a wide array of correlated electron phenomena in low-dimensions, including magnetism and superconductivity. The microscopic origin of these phenomena in complex oxide interfaces remains a n open question. Here we investigate for the first time the magnetic properties of semi-insulating NdTiO$_3$/SrTiO$_3$ (NTO/STO) interfaces and present the first milli-Kelvin study of NTO/STO. The magnetoresistance (MR) reveals signatures of local ferromagnetic order and of spin-dependent thermally-activated transport, which are described quantitatively by a simple phenomenological model. We discuss possible origins of the interfacial ferromagnetism. In addition, the MR also shows transient hysteretic features on a timescale of ~10-100 seconds. We demonstrate that these are consistent with an extrinsic magneto-thermal origin, which may have been misinterpreted in previous reports of magnetism in STO-based oxide interfaces. The existence of these two MR regimes (steady-state and transient) highlights the importance of time-dependent measurements for distinguishing signatures of ferromagnetism from other effects that can produce hysteresis at low temperatures.
Recently, phosphorene electronic and optoelectronic prototype devices have been fabricated with various metal electrodes. We systematically explore for the first time the contact properties of monolayer (ML) phosphorene with a series of commonly used metals (Al, Ag. Cu, Au, Cr, Ni, Ti, and Pd) via both ab initio electronic structure calculations and more reliable quantum transport simulations. Strong interactions are found between all the checked metals, with the energy band structure of ML phosphorene destroyed. In terms of the quantum transport simulations, ML phosphorene forms a n-type Schottky contact with Au, Cu, Cr, Al, and Ag electrodes, with electron Schottky barrier heights (SBHs) of 0.30, 0.34, 0.37, 0.51, and 0.52 eV, respectively, and p-type Schottky contact with Ti, Ni, and Pd electrodes, with hole SBHs of 0.30, 0.26, and 0.16 eV, respectively. These results are in good agreement with available experimental data. Our findings not only provide an insight into the ML phosphorene-metal interfaces but also help in ML phosphorene based device design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا