ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicted Stellar Kinematics of a Kiloparsec-Scale Nuclear Disc (or Ring) in the Milky Way

86   0   0.0 ( 0 )
 نشر من قبل Victor P. Debattista
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Debattista et al. (2015), we proposed that a kiloparsec-scale nuclear disc is responsible for the high-velocity secondary peak in the stellar line-of-sight velocity distributions (LOSVDs) seen at positive longitudes in the bulge by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Here, we make further qualitative but distinctive predictions of the kinematic properties of a nuclear disc, including for the LOSVDs at negative longitudes (which APOGEE-2 will observe) and examine the proper motions throughout the disc. Since a nuclear ring is also able to produce similar high-velocity LOSVD peaks, we present predictions for the proper motion signatures which distinguish between a nuclear disc and a nuclear ring. We also demonstrate that the stars in a nuclear disc, which would be on x2 orbits perpendicular to the bar, can remain on these orbits for a long time and can therefore be old. We show that such (old) nuclear discs of comparable size exist in external galaxies.

قيم البحث

اقرأ أيضاً

The Apache Point Observatory Galactic Evolution Experiment has measured the stellar velocities of red giant stars in the inner Milky Way. We confirm that the line of sight velocity distributions (LOSVDs) in the mid-plane exhibit a second peak at high velocities, whereas those at |b| = 2degrees do not. We use a high resolution simulation of a barred galaxy, which crucially includes gas and star formation, to guide our interpretation of the LOSVDs. We show that the data are fully consistent with the presence of a thin, rapidly rotating, nuclear disk extending to ~1 kpc. This nuclear disk is orientated perpendicular to the bar and is likely to be composed of stars on x2 orbits. The gas in the simulation is able to fall onto such orbits, leading to stars populating an orthogonal disk.
We investigate the stellar kinematics of the Galactic disc in 7 $<$ $R$ $<$ 13,kpc using a sample of 118,945 red giant branch (RGB) stars from LAMOST and Gaia. We characterize the median, dispersion and skewness of the distributions of the 3D stellar velocities, actions and orbital parameters across the age-metallicity and the disc $R$ -- $Z$ plane. Our results reveal abundant but clear stellar kinematic patterns and structures in the age -- metallicity and the disc $R$ -- $Z$ plane. The most prominent feature is the strong variations of the velocity, action, and orbital parameter distributions from the young, metal-rich thin disc to the old, metal-poor thick disc, a number of smaller-scale structures -- such as velocity streams, north-south asymmetries, and kinematic features of spiral arms -- are clearly revealed. Particularly, the skewness of $V_{phi}$ and $J_{phi}$ reveals a new substructure at $Rsimeq12$,kpc and $Zsimeq0$,kpc, possibly related to dynamical effects of spiral arms in the outer disc. We further study the stellar migration through analysing the stellar orbital parameters and stellar birth radii. The results suggest that the thick disc stars near the solar radii and beyond are mostly migrated from the inner disc of $Rsim4 - 6$,kpc due to their highly eccentrical orbits. Stellar migration due to dynamical processes with angular momentum transfer (churning) are prominent for both the old, metal-rich stars (outward migrators) and the young metal-poor stars (inward migrators). The spatial distribution in the $R$ -- $Z$ plane for the inward migrators born at a Galactocentric radius of $>$12,kpc show clear age stratifications, possibly an evidence that these inward migrators are consequences of splashes triggered by merger events of satellite galaxies that have been lasted in the past few giga years.
Within the central 10pc of our Galaxy lies a dense nuclear star cluster (NSC), and similar NSCs are found in most nearby galaxies. Studying the structure and kinematics of NSCs reveals the history of mass accretion of galaxy nuclei. Because the Milky Way (MW) NSC is at a distance of only 8kpc, we can spatially resolve the MWNSC on sub-pc scales. This makes the MWNSC a reference object for understanding the formation of all NSCs. We have used the NIR long-slit spectrograph ISAAC (VLT) in a drift-scan to construct an integral-field spectroscopic map of the central 9.5 x 8pc of our Galaxy. We use this data set to extract stellar kinematics both of individual stars and from the unresolved integrated light spectrum. We present a velocity and dispersion map from the integrated light and model these kinematics using kinemetry and axisymmetric Jeans models. We also measure CO bandhead strengths of 1,375 spectra from individual stars. We find kinematic complexity in the NSCs radial velocity map including a misalignment of the kinematic position angle by 9 degree counterclockwise relative to the Galactic plane, and indications for a rotating substructure perpendicular to the Galactic plane at a radius of 20 or 0.8pc. We determine the mass of the NSC within r = 4.2pc to 1.4 x 10^7 Msun. We also show that our kinematic data results in a significant underestimation of the supermassive black hole (SMBH) mass. The kinematic substructure and position angle misalignment may hint at distinct accretion events. This indicates that the MWNSC grew at least partly by the mergers of massive star clusters. Compared to other NSCs, the MWNSC is on the compact side of the r_eff - M_NSC relation. The underestimation of the SMBH mass might be caused by the kinematic misalignment and a stellar population gradient. But it is also possible that there is a bias in SMBH mass measurements obtained with integrated light.
To illustrate the potential of GDR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-spa ce coordinates, precise parallaxes, and precise Galactic cylindrical velocities . From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from $sim$5~kpc to $sim$13~kpc from the Galactic centre and up to 2~kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars ($r < 200$~pc), with median velocity uncertainties of 0.4~km/s, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. GDR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the $U-V$ plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. (abridged)
The nuclear stellar disc (NSD) is a flattened stellar structure that dominates the gravitational potential of the Milky Way at Galactocentric radii $30 lesssim R lesssim 300{, rm pc}$. In this paper, we construct axisymmetric Jeans dynamical models o f the NSD based on previous photometric studies and we fit them to line-of-sight kinematic data of APOGEE and SiO maser stars. We find that (i) the NSD mass is lower but consistent with the mass independently determined from photometry by Launhardt et al. (2002). Our fiducial model has a mass contained within spherical radius $r=100{, rm pc}$ of $M(r<100{, rm pc}) = 3.9 pm 1 times 10^8 {, rm M_odot}$ and a total mass of $M_{rm NSD} = 6.9 pm 2 times 10^8 {, rm M_odot}$. (ii) The NSD might be the first example of a vertically biased disc, i.e. with ratio between the vertical and radial velocity dispersion $sigma_z/sigma_R>1$. Observations and theoretical models of the star-forming molecular gas in the central molecular zone suggest that large vertical oscillations may be already imprinted at stellar birth. However, the finding $sigma_z/sigma_R > 1$ depends on a drop in the velocity dispersion in the innermost few tens of parsecs, on our assumption that the NSD is axisymmetric, and that the available (extinction corrected) stellar samples broadly trace the underlying light and mass distributions, all of which need to be established by future observations and/or modelling. (iii) We provide the most accurate rotation curve to date for the innermost $500 {, rm pc}$ of our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا