ترغب بنشر مسار تعليمي؟ اضغط هنا

Time calibration of the J-PET detector

63   0   0.0 ( 0 )
 نشر من قبل Magdalena Skurzok Mrs.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Jagiellonian Positron Emission Tomograph (J-PET) project carried out in the Institute of Physics of the Jagiellonian University is focused on construction and tests of the first prototype of PET scanner for medical diagnostic which allows for the simultaneous 3D imaging of the whole human body using organic scintillators. The J-PET prototype consists of 192 scintillator strips forming three cylindrical layers which are optimized for the detection of photons from the electron-positron annihilation with high time- and high angular-resolutions. In this article we present time calibration and synchronization of the whole J-PET detection system by irradiating each single detection module with a 22Na source and a small detector providing common reference time for synchronization of all the modules.

قيم البحث

اقرأ أيضاً

Photomultipliers are commonly used in commercial PET scanner as devices which convert light produced in scintillator by gamma quanta from positron-electron annihilation into electrical signal. For proper analysis of obtained electrical signal, a phot omultiplier gain curve must be known, since gain can be significantly different even between photomultipliers of the same model. In this article we describe single photoelectron method used for photomultipliers calibration applied for J-PET scanner, a novel PET detector being developed at the Jagiellonian University. Description of calibration method, an example of calibration curve and gain of few R4998 Hamamatsu photomultipliers are presented.
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET device built from plastic scintillators. It is a multi-purpose detector designed for medical imaging and for studies of properties of positronium atoms in porous matter and in livi ng organisms. In this article we report on the commissioning of the J-PET detector in view of studies of positronium decays. We present results of analysis of the positron lifetime measured in the porous polymer. The obtained results prove that J-PET is capable of performing simultaneous imaging of the density distribution of annihilation points as well as positron annihilation lifetime spectroscopy.
The J-PET tomograph is constructed from plastic scintillator strips arranged axially in concentric cylindrical layers. It enables investigations of positronium decays by measurement of the time, position, polarization and energy deposited by photons in the scintillators, in contrast to studies conducted so far with crystal and semiconductor based detection systems where the key selection of events is based on the measurement of the photons energies. In this article we show that the J-PET tomograph system is capable of exclusive measurements of the decays of ortho-positronium atoms. We present the first positronium production results, its lifetime distribution measurements and discuss estimation of the influence of various background sources. The tomograph s performance demonstrated here makes it suitable for precision studies of positronium decays including entanglement of the final state photons, positron annihilation lifetime spectroscopy plus molecular imaging diagnostics.
In this article we present a novel method of hit time and hit position reconstruction in long scintillator detectors. We take advantage of the fact that for this kind of detectors amplitude and shape of registered signals depends strongly on the posi tion where particle hit the detector. The reconstruction is based on determination of the degree of similarity between measured and averaged signals stored in a library for a set of well-defined positions along the scintillator. Preliminary results of validation of the introduced method with experimental data obtained by means of the double strip prototype of the J-PET detector are presented.
This article describes simulations of scattering of annihilation gamma quanta in a strip of plastic scintillator. Such strips constitute basic detection modules in a newly proposed Positron Emission Tomography which utilizes plastic scintillators ins tead of inorganic crystals. An algorithm simulating chain of Compton scatterings was elaborated and series of simulations have been conducted for the scintillator strip with the cross section of 5 mm x 19 mm. Obtained results indicate that secondary interactions occur only in the case of about 8% of events and out of them only 25$%$ take place in the distance larger than 0.5 cm from the primary interaction. It was also established that light signals produced at primary and secondary interactions overlap with the delay which distribution is characterized by FWHM of about 40 ps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا