ﻻ يوجد ملخص باللغة العربية
This paper is devoted to establishing the uniform estimates and asymptotic behaviors of the Greens functions $(G_varepsilon,Pi_varepsilon)$ (and fundamental solutions $(Gamma_varepsilon, Q_varepsilon)$) for the Stokes system with periodically oscillating coefficients (including a system of linear incompressible elasticity). Particular emphasis will be placed on the new oscillation estimates for the pressure component $Pi_varepsilon$. Also, for the first time we prove the textit{adjustable} uniform estimates (i.e., Lipschitz estimate for velocity and oscillation estimate for pressure) by making full use of the Greens functions. Via these estimates, we establish the asymptotic expansions of $G_varepsilon, abla G_varepsilon, Pi_varepsilon$ and more, with a tiny loss on the errors. Some estimates obtained in this paper are new even for Stokes system with constant coefficients, and possess potential applications in homogenization of Stokes or elasticity system.
We study Green functions for the pressure of stationary Stokes systems in a (possibly unbounded) domain $Omegasubset mathbb{R}^d$, where $dge 2$. We construct the Green function when coefficients are merely measurable in one direction and have Dini m
This paper is concerned with periodic homogenization of second-order elliptic systems in divergence form with oscillating Dirichlet data or Neumann data of first order. We prove that the homogenized boundary data belong to $W^{1, p}$ for any $1<p<inf
We prove the existence and pointwise bounds of the Green functions for stationary Stokes systems with measurable coefficients in two dimensional domains. We also establish pointwise bounds of the derivatives of the Green functions under a regularity
This work develops a quantitative homogenization theory for random suspensions of rigid particles in a steady Stokes flow, and completes recent qualitative results. More precisely, we establish a large-scale regularity theory for this Stokes problem,
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interf