ترغب بنشر مسار تعليمي؟ اضغط هنا

On generalized $sigma$-soluble groups

91   0   0.0 ( 0 )
 نشر من قبل Alexander Skiba
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $sigma ={sigma_{i} | iin I}$ be a partition of the set of all primes $Bbb{P}$ and $G$ a finite group. Let $sigma (G)={sigma _{i} : sigma _{i}cap pi (G) e emptyset$. A set ${cal H}$ of subgroups of $G$ is said to be a complete Hall $sigma $-set of $G$ if every member $ e 1$ of ${cal H}$ is a Hall $sigma _{i}$-subgroup of $G$ for some $iin I$ and $cal H$ contains exactly one Hall $sigma _{i}$-subgroup of $G$ for every $i$ such that $sigma _{i}in sigma (G)$. We say that $G$ is $sigma$-full if $G$ possesses a complete Hall $sigma $-set. A complete Hall $sigma $-set $cal H$ of $G$ is said to be a $sigma$-basis of $G$ if every two subgroups $A, B incal H$ are permutable, that is, $AB=BA$. In this paper, we study properties of finite groups having a $sigma$-basis. In particular, we prove that if $G$ has a a $sigma$-basis, then $G$ is generalized $sigma$-soluble, that is, $G$ has a complete Hall $sigma $-set and for every chief factor $H/K$ of $G$ we have $|sigma (H/K)|leq 2$. Moreover, answering to Problem 8.28 in [A.N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4(3) (2016), 281--309], we prove the following Theorem A. Suppose that $G$ is $sigma$-full. Then every complete Hall $sigma$-set of $G$ forms a $sigma$-basis of $G$ if and only if $G$ is generalized $sigma$-soluble and for the automorphism group $G/C_{G}(H/K)$, induced by $G$ on any its chief factor $H/K$, we have either $sigma (H/K)=sigma (G/C_{G}(H/K))$ or $sigma (H/K) ={sigma _{i}}$ and $G/C_{G}(H/K)$ is a $sigma _{i} cup sigma _{j}$-group for some $i e j$.

قيم البحث

اقرأ أيضاً

Let $mathfrak{F}$ be a class of finite groups and $G$ a finite group. Let ${cal L}_{mathfrak{F}}(G)$ be the set of all subgroups $A$ of $G$ with $A^{G}/A_{G}in mathfrak{F}$. A chief factor $H/K$ of $G$ is $mathfrak{F}$-central in $G$ if $(H/K)rtimes (G/C_{G}(H/K)) inmathfrak{F}$. We study the structure of $G$ under the hypothesis that every chief factor of $G$ between $A_{G}$ and $A^{G}$ is $mathfrak{F}$-central in $G$ for every subgroup $Ain {cal L}_{mathfrak{F}}(G)$. As an application, we prove that a finite soluble group $G$ is a $PST$-group if and only if $A^{G}/A_{G}leq Z_{infty}(G/A_{G})$ for every subgroup $Ain {cal L}_{mathfrak{N}}(G)$, where $mathfrak{N}$ is the class of all nilpotent groups.
Let ${frak F}$ be a class of group and $G$ a finite group. Then a set $Sigma $ of subgroups of $G$ is called a emph{$G$-covering subgroup system} for the class ${frak F}$ if $Gin {frak F}$ whenever $Sigma subseteq {frak F}$. We prove that: {sl If a set of subgroups $Sigma$ of $G$ contains at least one supplement to each maximal subgroup of every Sylow subgroup of $G$, then $Sigma$ is a $G$-covering subgroup system for the classes of all $sigma$-soluble and all $sigma$-nilpotent groups, and for the class of all $sigma$-soluble $Psigma T$-groups.} This result gives positive answers to questions 19.87 and 19.88 from the Kourovka notebook.
Let $G$ be a transitive permutation group on a finite set $Omega$ and recall that a base for $G$ is a subset of $Omega$ with trivial pointwise stabiliser. The base size of $G$, denoted $b(G)$, is the minimal size of a base. If $b(G)=2$ then we can st udy the Saxl graph $Sigma(G)$ of $G$, which has vertex set $Omega$ and two vertices are adjacent if they form a base. This is a vertex-transitive graph, which is conjectured to be connected with diameter at most $2$ when $G$ is primitive. In this paper, we combine probabilistic and computational methods to prove a strong form of this conjecture for all almost simple primitive groups with soluble point stabilisers. In this setting, we also establish best possible lower bounds on the clique and independence numbers of $Sigma(G)$ and we determine the groups with a unique regular suborbit, which can be interpreted in terms of the valency of $Sigma(G)$.
109 - Alexander N. Skiba 2020
Let $G$ be a finite group and $sigma$ a partition of the set of all? primes $Bbb{P}$, that is, $sigma ={sigma_i mid iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_i$ and $sigma_icap sigma_j= emptyset $ for all $i e j$. If $n$ is an integer, we write $s igma(n)={sigma_i mid sigma_{i}cap pi (n) e emptyset }$ and $sigma (G)=sigma (|G|)$. We call a graph $Gamma$ with the set of all vertices $V(Gamma)=sigma (G)$ ($G e 1$) a $sigma$-arithmetic graph of $G$, and we associate with $G e 1$ the following three directed $sigma$-arithmetic graphs: (1) the $sigma$-Hawkes graph $Gamma_{Hsigma }(G)$ of $G$ is a $sigma$-arithmetic graph of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{Hsigma }(G))$ if $sigma_jin sigma (G/F_{{sigma_i}}(G))$; (2) the $sigma$-Hall graph $Gamma_{sigma Hal}(G)$ of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{sigma Hal}(G))$ if for some Hall $sigma_i$-subgroup $H$ of $G$ we have $sigma_jin sigma (N_{G}(H)/HC_{G}(H))$; (3) the $sigma$-Vasilev-Murashko graph $Gamma_{{mathfrak{N}_sigma }}(G)$ of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{{mathfrak{N}_sigma}}(G))$ if for some ${mathfrak{N}_{sigma }}$-critical subgroup $H$ of $G$ we have $sigma_i in sigma (H)$ and $sigma_jin sigma (H/F_{{sigma_i}}(H))$. In this paper, we study the structure of $G$ depending on the properties of these three graphs of $G$.
Let $G$ be a finite group and $sigma ={sigma_{i} | iin I}$ some partition of the set of all primes $Bbb{P}$, that is, $sigma ={sigma_{i} | iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_{i}$ and $sigma_{i}cap sigma_{j}= emptyset $ for all $i e j$. We s ay that $G$ is $sigma$-primary if $G$ is a $sigma _{i}$-group for some $i$. A subgroup $A$ of $G$ is said to be: ${sigma}$-subnormal in $G$ if there is a subgroup chain $A=A_{0} leq A_{1} leq cdots leq A_{n}=G$ such that either $A_{i-1}trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $sigma$-primary for all $i=1, ldots, n$, modular in $G$ if the following conditions hold: (i) $langle X, A cap Z rangle=langle X, A rangle cap Z$ for all $X leq G, Z leq G$ such that $X leq Z$, and (ii) $langle A, Y cap Z rangle=langle A, Y rangle cap Z$ for all $Y leq G, Z leq G$ such that $A leq Z$. In this paper, a subgroup $A$ of $G$ is called $sigma$-quasinormal in $G$ if $L$ is modular and ${sigma}$-subnormal in $G$. We study $sigma$-quasinormal subgroups of $G$. In particular, we prove that if a subgroup $H$ of $G$ is $sigma$-quasinormal in $G$, then for every chief factor $H/K$ of $G$ between $H^{G}$ and $H_{G}$ the semidirect product $(H/K)rtimes (G/C_{G}(H/K))$ is $sigma$-primary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا