ﻻ يوجد ملخص باللغة العربية
We consider divergent orbits of the group of diagonal matrices in the space of lattices in Euclidean space. We define two natural numerical invariants of such orbits: The discriminant - an integer - and the type - an integer vector. We then study the question of the limit distributional behaviour of these orbits as the discriminant goes to infinity. Using entropy methods we prove that for divergent orbits of a specific type, virtually any sequence of orbits equidistribute as the discriminant goes to infinity. Using measure rigidity for higher rank diagonal actions we complement this result and show that in dimension 3 or higher only very few of these divergent orbits can spend all of their life-span in a given compact set before they diverge.
We define a natural topology on the collection of (equivalence classes up to scaling of) locally finite measures on a homogeneous space and prove that in this topology, pushforwards of certain infinite volume orbits equidistribute in the ambient spac
Counting periodic orbits of endomorphisms on the 2-torus is considered, with special focus on the relation between global and local aspects and between the dynamical zeta function on the torus and its analogue on finite lattices. The situation on the
We establish various analogs of the Kronecker-Weyl equidistribution theorem that can be considered higher-dimension
We prove results about orbit closures and equidistribution for the SL(2,R) action on the moduli space of compact Riemann surfaces, which are analogous to the theory of unipotent flows. The proofs of the main theorems rely on the measure classificatio
We confirm a conjecture of Jens Marklof regarding the equidistribution of certain sparse collections of points on expanding horospheres. These collections are obtained by intersecting the expanded horosphere with a certain manifold of complementary d