ﻻ يوجد ملخص باللغة العربية
A new design for the anode of a time projection chamber, consisting of a charge-detecting tile, is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~si{cm} $times$ 10~si{cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a $^{207}$Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution $sigma/E$=5.5% is observed at 570~si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/si{cm}.
Silicon Photomultipliers (SiPMs) are attractive candidates for light detectors for next generation liquid xenon double-beta decay experiments, like nEXO. In this paper we discuss the requirements that the SiPMs must satisfy in order to be suitable fo
nEXO is a proposed experiment to search for the neutrino-less double beta decay ($0 ubetabeta$) of $^{136}$Xe in a tonne-scale liquid xenon time projection chamber (TPC). The nEXO TPC will be equipped with charge collection tiles to form the anode. I
The CALICE collaboration is presently constructing a test hadron calorimeter (HCAL) with 7620 scintillator tiles read out by novel photo-detectors - Silicon Photomultipliers (SiPMs). This prototype is the first device which uses SiPMs on a large scal
The present article introduces a novel ASIC architecture, designed in the context of the ATLAS Tile Calorimeter upgrade program for the High-Luminosity phase of the Large Hadron Collider at CERN. The architecture is based on radiation-tolerant 130 nm
To better understand the origins of the timing resolution, also known as jitter, of superconducting nanowire single-photon detectors (SNSPDs), we have performed timing characterizations of a niobium nitride SNSPD with a dual-ended readout. By simulta