ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible quadrupolar nematic phase in the frustrated spin chain LiCuSbO$_4$: an NMR investigation

74   0   0.0 ( 0 )
 نشر من قبل Miroslav Pozek
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The frustrated one-dimensional (1D) quantum magnet LiCuSbO$_4$ is one rare realization of the $J_1-J_2$ spin chain model with an easily accessible saturation field, formerly estimated to 12~T. Exotic multipolar nematic phases were theoretically predicted in such compounds just below the saturation field, but without unambiguous experimental observation so far. In this paper we present extensive experimental research of the compound in the wide temperature (30mK$-$300K) and field (0$-$13.3T) range by muon spin rotation ($mu$SR), $^7$Li nuclear magnetic resonance (NMR) and magnetic susceptibility (SQUID). $mu$SR experiments in zero magnetic field demonstrate the absence of long range 3D ordering down to 30mK. Together with former heat capacity data [S.E. Dutton emph{et al}, Phys. Rev. Lett. 108, 187206 (2012)], magnetic susceptibility measurements suggest short range correlated vector chiral phase in the field range $0-4$T. In the intermediate field values (5$-$12T), the system enters in a 3D ordered spin density wave phase with 0.75$mu_B$ per copper site at lowest temperatures (125mK), estimated by NMR. At still higher field, the magnetization is found to be saturated above 13T where the spin lattice $T_1^{-1}$ relaxation reveals a spin gap estimated to 3.2(2)K. We narrow down the possibility of observing a multipolar nematic phase to the range 12.5$-$13T.

قيم البحث

اقرأ أيضاً

The significance of spin-lattice coupling in the phase diagram of the quantum spin-icepyrochlore Tb2Ti2O7 has been a topic of debate for some time. Here, we focus on the aspect of vibronic coupling, which occurs between the Tb3+ electronic levels and transverse acoustic phonons, by studying their dependence on a magnetic field applied along the cubic h111i direction. Our experimental THz spectroscopy measurements, combined with quantitative theoretical quantum calculations, show that indeed vibronic effects are observed at 3 K. An analysis incorporating quadrupolar spin-lattice effects in the Hamiltonian is therefore relevant in this compound, which is no longer optically isotropic but magnetically birefringent.
We study field induced quantum phase in weakly-coupled ferromagnetic frustrated chain LiCuVO$_4$ by neutron diffraction technique. A new incommensurate magnetic peak is observed at $H ge 8.5$ T. The field dependent propagation vector is identified wi th the spin density wave correlation in the theoretically predicted magnetic quadrupole order. Quantum fluctuation, geometrical frustration, and interchain interaction induce the exotic spin density wave long-range order in the insulating magnet.
We report $^{133}$Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs$_2$CuCl$_4$ down to 2 K and up to 15 T. We show that $^{133}$Cs NMR is a good probe of the magnetic degrees of freedom in this mater ial. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (b axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin-spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.
144 - L. Heinze , G. Bastien , B. Ryll 2019
We report on a detailed neutron diffraction and $^1$H-NMR study on the frustrated spin-1/2 chain material linarite, PbCuSO$_4$(OH)$_2$, where competing ferromagnetic nearest neighbor and antiferromagnetic next-nearest neighbor interactions lead to fr ustration. From the magnetic Bragg peak intensity studied down to 60 mK, the magnetic moment per Cu atom is obtained within the whole magnetic phase diagram for $H parallel b$ axis. Further, we establish the detailed configurations of the shift of the SDW propagation vector in phase V with field and temperature. Finally, combining our neutron diffraction results with those from a low-temperature/high-field NMR study we find an even more complex phase diagram close to the quasi-saturation field suggesting that bound two-magnon excitations are the lowest energy excitations close to and in the quasi-saturation regime. Qualitatively and semi-quantitatively, we relate such behavior to $XYZ$ exchange anisotropy and contributions from the Dzyaloshinsky-Moriya interaction to affect the magnetic properties of linarite.
Frustrated spin systems can show phases with spontaneous breaking of spin-rotational symmetry without the formation of local magnetic order. We study the dynamic response of the spin-nematic phase of one-dimensional spin-1/2 systems, characterized by slow large-distance decay of quadrupolar correlations, by numerically computing one-spin and two-spin dynamical structure factors at zero temperature using time-dependent density matrix renormalization group methods. We interpret the results in terms of an effective theory of gapped magnon excitations interacting with a quasi-condensate of bound magnon pairs. This employs an extension of the well-known Tomonaga-Luttinger liquid theory which includes the magnon states as a mobile impurity. A good qualitative understanding of the characteristic thresholds and their intensity in the structure factors is obtained this way. Our results are useful in the interpretation of inelastic neutron scattering and resonant inelastic x-ray scattering experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا