ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of weak interactions in dynamic ejecta from binary neutron star mergers

82   0   0.0 ( 0 )
 نشر من قبل Albino Perego Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak reactions are critical for the neutron richness of the matter dynamically ejected after the merger of two neutron stars. The neutron richness, defined by the electron fraction (Ye), determines which heavy elements are produced by the r-process and thus directly impacts the kilonova light curve. In this work, we have performed a systematic and detailed post-processing study of the impact of weak reactions on the distribution of the electron fraction and of the entropy on the dynamic ejecta obtained from an equal mass neutron star binary merger simulated in full general relativity and with microscopic equation of state. Previous investigations indicated that shocks increase Ye, however our results show that shocks can also decrease Ye, depending on their thermodynamical conditions. Moreover, we have found that neutrino absorption are key and need to be considered in future simulations. We also demonstrated that the angular dependence of the neutrino luminosity and the spatial distribution of the ejecta can lead to significant difference in the electron fraction distribution. In addition to the detailed study of the Ye evolution and its dependences, we have performed nucleosynthesis calculations. They clearly point to the necessity of improving the neutrino treatment in current simulations to be able to predict the contribution of neutron star mergers to the chemical history of the universe and to reliable calculate their kilonova light curves.

قيم البحث

اقرأ أيضاً

We investigate beta-interactions of free nucleons and their impact on the electron fraction (Y_e) and r-process nucleosynthesis in ejecta characteristic of binary neutron star mergers (BNSMs). For that we employ trajectories from a relativistic BNSM model to represent the density-temperature evolutions in our parametric study. In the high-density environment, positron captures decrease the neutron richness at the high temperatures predicted by the hydrodynamic simulation. Circumventing the complexities of modelling three-dimensional neutrino transport, (anti)neutrino captures are parameterized in terms of prescribed neutrino luminosities and mean energies, guided by published results and assumed as constant in time. Depending sensitively on the adopted neutrino-antineutrino luminosity ratio, neutrino processes increase Y_e to values between 0.25 and 0.40, still allowing for a successful r-process compatible with the observed solar abundance distribution and a significant fraction of the ejecta consisting of r-process nuclei. If the electron neutrino luminosities and mean energies are relatively large compared to the antineutrino properties, the mean Y_e might reach values >0.40 so that neutrino captures seriously compromise the success of the r-process. In this case, the r-abundances remain compatible with the solar distribution, but the total amount of ejected r-material is reduced to a few percent, because the production of iron-peak elements is favored. Proper neutrino physics, in particular also neutrino absorption, have to be included in BNSM simulations before final conclusions can be drawn concerning r-processing in this environment and concerning observational consequences like kilonovae, whose peak brightness and color temperature are sensitive to the composition-dependent opacity of the ejecta.
We present a coherent study of the impact of neutrino interactions on the r-process element nucleosynthesis and the heating rate produced by the radioactive elements synthesised in the dynamical ejecta of neutron star-neutron star (NS-NS) mergers. We have studied the material ejected from four NS-NS merger systems based on the hydrodynamical simulations of Ardevol-Pulpillo et al. (2019) which handle neutrino effects in an elaborate way by including neutrino equilibration with matter in optically thick regions and re-absorption in optically thin regions. We find that the neutron richness of the dynamical ejecta is significantly affected by the neutrinos emitted by the post-merger remnant, in particular when compared to a case neglecting all neutrino interactions. Our nucleosynthesis results show that a solar-like distribution of r-process elements with mass numbers $A gtrsim 90$ is produced, including a significant enrichment in Sr and a reduced production of actinides compared to simulations without inclusion of the nucleonic weak processes. The composition of the ejected matter as well as the corresponding rate of radioactive decay heating are found to be rather independent of the system mass asymmetry and the adopted equation of state. This approximate degeneracy in abundance pattern and heating rates can be favourable for extracting the ejecta properties from kilonova observations. Part II of this work will study the light curve produced by the dynamical ejecta of our four NS merger models.
Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements by the r-process. The subsequent radioactive decay of the nuclei can power electromagnetic emission similar to, but significantly dimm er than, an ordinary supernova. Identifying such events is an important goal of future transient surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we consider the opacity of expanding r-process material and argue that it is dominated by line transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate radiative data for tens of millions of lines. We find that the resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities indicate that the transient emission should be dimmer and redder than previously thought. The spectra appear pseudo-blackbody, with broad absorption features, and peak in the infrared (~1 micron). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to compact object mergers.
Heavy elements like gold, platinum or uranium are produced in the r-process, which needs neutron-rich and explosive environments. Neutron star mergers are a promising candidate for an r-process site. They exhibit three different channels for matter e jection fulfilling these conditions: dynamic ejecta due to tidal torques, neutrino-driven winds and evaporating matter from the accretion disk. We present a first study of the integrated nucleosynthesis for a neutrino-driven wind from a neutron star merger with a hyper-massive neutron star. Trajectories from a recent hydrodynamical simulation are divided into four different angle regions and post-processed with a reaction network. We find that the electron fraction varies around $Y_e approx 0.1 - 0.4$, but its distribution differs for every angle of ejection. Hence, the wind ejecta do not undergo a robust r-process, but rather possess distinct nucleosynthesis yields depending on the angle range. Compared to the dynamic ejecta, a smaller amount of neutron-rich matter gets unbound, but the production of lighter heavy elements with $A lesssim 130$ in the neutrino-driven wind can complement the strong r-process of the dynamic ejecta.
Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supra-massive, rotationally-supported NS, which then collapses to a BH following angular momentum losse s. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supra-massive NSs. This lends support to scenarios where a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future gravitational wave (GW) observatories to focus on high frequencies to study the post merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require ~60-70% of SGRBs to be from NS-BH mergers rather than just binary NSs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا