ﻻ يوجد ملخص باللغة العربية
The first hydrostatic core (FHSC) is the first stable object to form in simulations of star formation. This stage has yet to be observed definitively, although several candidate FHSCs have been reported. We have produced synthetic spectral energy distributions (SEDs) from 3D hydrodynamical simulations of pre-stellar cores undergoing gravitational collapse for a variety of initial conditions. Variations in the initial rotation rate, radius and mass lead to differences in the location of the SED peak and far-infrared flux. Secondly, we attempt to fit the SEDs of five FHSC candidates from the literature and five newly identified FHSC candidates located in the Serpens South molecular cloud with simulated SEDs. The most promising FHSC candidates are fitted by a limited number of model SEDs with consistent properties, which suggests the SED can be useful for placing constraints on the age and rotation rate of the source. The sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS, Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22, Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates that they are likely to be more evolved.
We present ALMA 3 mm molecular line and continuum observations with a resolution of ~3.5 towards five first hydrostatic core (FHSC) candidates (L1451-mm, Per-bolo 58, Per-bolo 45, L1448-IRS2E and Cha-MMS1). Our goal is to characterize their envelopes
We observe the abrupt end of solar activity cycles at the Suns equator by combining almost 140 years of observations from ground and space. These terminator events appear to be very closely related to the onset of magnetic activity belonging to the n
The first stable object to develop in the low-mass star formation process has long been predicted to be the first hydrostatic core (FHSC). Despite much effort, it has still yet to be definitively observed in nature. More specific observational signat
Deep observations of galaxy outskirts reveal faint extended stellar components (ESCs) of streams, shells, and halos, which are ghostly remnants of the tidal disruption of satellite galaxies. We use cosmological galaxy formation simulations in Cold Da
We present high angular resolution SMA and Spitzer observations toward the Bok globule CB17. SMA 1.3mm dust continuum images reveal within CB17 two sources with an angular separation of about 21 (about 5250 AU at a distance of 250 pc). The northweste