ترغب بنشر مسار تعليمي؟ اضغط هنا

Global enhancement and structure formation of the magnetic field in spiral galaxies

175   0   0.0 ( 0 )
 نشر من قبل Sergey Khoperskov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling/heating. In agreement with previous studies, we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field strongly coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to 3-10$mu G$ in the cold gas during several rotation periods (500-800 Myr), whereas ratio between azimuthal and radial field is equal to 4/1. Mean field strength increases by a factor of 1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25 % from the total strength. By making an analysis of the time-depended evolution of radial Poynting flux we point out that the magnetic field strength is enhanced stronger at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also support the presence of sufficient conditions for development of MRI at distances >11 kpc.

قيم البحث

اقرأ أيضاً

We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find magnetic field reversals occur when the velocity jump across the spiral shock is above $approx$20km s$^{-1}$, occurring where the velocity change is highest, typically at the inner Lindblad resonance (ILR) in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the co-rotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at a radii of around 4--6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using Athena, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.
95 - Si-Yue Yu , Luis C. Ho , 2021
We investigate the impact of spiral structure on global star formation using a sample of 2226 nearby bright disk galaxies. Examining the relationship between spiral arms, star formation rate (SFR), and stellar mass, we find that arm strength correlat es well with the variation of SFR as a function of stellar mass. Arms are stronger above the star-forming galaxy main sequence (MS) and weaker below it: arm strength increases with higher $log,({rm SFR}/{rm SFR}_{rm MS})$, where ${rm SFR}_{rm MS}$ is the SFR along the MS. Likewise, stronger arms are associated with higher specific SFR. We confirm this trend using the optical colors of a larger sample of 4378 disk galaxies, whose position on the blue cloud also depends systematically on spiral arm strength. This link is independent of other galaxy structural parameters. For the subset of galaxies with cold gas measurements, arm strength positively correlates with HI and H$_2$ mass fraction, even after removing the mutual dependence on $log,({rm SFR}/{rm SFR}_{rm MS})$, consistent with the notion that spiral arms are maintained by dynamical cooling provided by gas damping. For a given gas fraction, stronger arms lead to higher $log,({rm SFR}/{rm SFR}_{rm MS})$, resulting in a trend of increasing arm strength with shorter gas depletion time. We suggest a physical picture in which the dissipation process provided by gas damping maintains spiral structure, which, in turn, boosts the star formation efficiency of the gas reservoir.
Observations of regular magnetic fields in several nearby galaxies reveal magnetic arms situated between the material arms. The nature of these magnetic arms is a topic of active debate. Previously we found a hint that taking into account the effects of injections of small-scale magnetic fields generated, e.g., by turbulent dynamo action, into the large-scale galactic dynamo can result in magnetic arm formation. We now investigate the joint roles of an arm/interarm turbulent diffusivity contrast and injections of small-scale magnetic field on the formation of large-scale magnetic field (magnetic arms) in the interarm region. We use the relatively simple no-$z$ model for the galactic dynamo. This involves projection on to the galactic equatorial plane of the azimuthal and radial magnetic field components; the field component orthogonal to the galactic plane is estimated from the solenoidality condition. We find that addition of diffusivity gradients to the effect of magnetic field injections makes the magnetic arms much more pronounced. In particular, the regular magnetic field component becomes larger in the interarm space compared to that within the material arms.The joint action of the turbulent diffusivity contrast and small-scale magnetic field injections (with the possible participation of other effects previously suggested) appears to be a plausible explanation for the phenomenon of magnetic arms.
Star formation is one of the key factors that shapes galaxies. This process is relatively well understood from both simulations and observations on a small local scale of individual giant molecular clouds and also on a global galaxy-wide scale (e.g. the Kennicutt-Schmidt law). However, there is still no understanding on how to connect global to local star formation scales and whether this connection is at all possible. Here we analyze spatially resolved kinematics and the star formation rate density $Sigma_{SFR}$ for a combined sample of 17 nearby spiral galaxies obtained using our own optical observations in H$alpha$ for 9 galaxies and neutral hydrogen radio observations combined with a multi-wavelength spectral energy distribution analysis for 8 galaxies from the THINGS project. We show that the azimuthally averaged normalized star formation rate density in spiral galaxies on a scale of a few hundred parsecs is proportional to the kinetic energy of giant molecular cloud collisions due to differential rotation of the galactic disc. This energy is calculated from the rotation curve using the two Oort parameters A and B as $log (Sigma_{SFR} / SFR_{tot}) propto log[2 A^2+ 5 B^2]$. The total kinetic energy of collision is defined by the shear velocity that is proportional to A and the rotational energy of a cloud proportional to the vorticity B. Hence, shear does not act as a stabilizing factor for the cloud collapse thus reducing star formation but rather increases it by boosting the kinetic energy of collisions. This result can be a tool through which one can predict a radial distribution of star formation surface density using only a rotation curve.
We present a method for determining directions of magnetic field vectors in a spiral galaxy using two synchrotron polarization maps, an optical image, and a velocity field. The orientation of the transverse magnetic field is determined with a synchro tron polarization map of higher frequency band and the $180^circ$-ambiguity is solved by using sign of the Rotation Measure (RM) after determining geometrical orientation of a disk based on a assumption of trailing spiral arms. The advantage of this method is that direction of magnetic vector for each line of sight through the galaxy can be inexpensively determined with easily available data and with simple assumptions. We applied this method to three nearby spiral galaxies using archival data obtained with the Very Large Array (VLA) to demonstrate how it works. The three galaxies have both clockwise and counter-clockwise magnetic fields, which implies that all three galaxies are not classified in simple Axis-Symmetric type but types of higher modes and that magnetic reversals commonly exist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا