ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating a metallicity-dependent initial mass function: Consequences for feedback and chemical abundances

109   0   0.0 ( 0 )
 نشر من قبل Thales Gutcke
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observational and theoretical arguments increasingly suggest that the initial mass function (IMF) of stars may depend systematically on environment, yet most galaxy formation models to date assume a universal IMF. Here we investigate simulations of the formation of Milky Way analogues run with an empirically derived metallicity-dependent IMF and the moving-mesh code AREPO in order to characterize the associated uncertainties. In particular, we compare a constant Chabrier and a varying metallicity-dependent IMF in cosmological, magneto-hydrodynamical zoom-in simulations of Milky Way-sized halos. We find that the non-linear effects due to IMF variations typically have a limited impact on the morphology and the star formation histories of the formed galaxies. Our results support the view that constraints on stellar-to-halo mass ratios, feedback strength, metallicity evolution and metallicity distributions are in part degenerate with the effects of a non-universal, metallicity-dependent IMF. Interestingly, the empirical relation we use between metallicity and the high mass slope of the IMF does not aid in the quenching process. It actually produces up to a factor of 2-3 more stellar mass if feedback is kept constant. Additionally, the enrichment history and the z = 0 metallicity distribution are significantly affected. In particular, the alpha enhancement pattern shows a steeper dependence on iron abundance in the metallicity-dependent model, in better agreement with observational constraints.

قيم البحث

اقرأ أيضاً

We study how an observationally-motivated, metallicity-dependent initial mass function (IMF) affects the feedback budget and observables of an ultra-faint dwarf galaxy. We model the evolution of a low-mass ($approx 8 , times , 10^{8} , rm M_{odot}$) dark matter halo with cosmological, zoomed hydrodynamical simulations capable of resolving individual supernovae explosions. We complement the EDGE galaxy formation model from Agertz et al. (2020) with a new prescription for IMF variations according to Geha et al. (2013). At the low metallicities typical of faint dwarf galaxies, the IMF becomes top-heavy, increasing the efficiency of supernova and photo-ionization feedback in regulating star formation. This results in a 100-fold reduction of the final stellar mass of the dwarf compared to a canonical IMF, at fixed dynamical mass. The increase in the feedback budget is nonetheless met by increased metal production from more numerous massive stars, leading to nearly constant iron content at $z=0$. A metallicity-dependent IMF therefore provides a mechanism to produce low-mass ($rm M_{star}sim 10^3 rm M_{odot}$), yet enriched ($rm [Fe/H]approx -2$) field dwarf galaxies, thus opening a self-consistent avenue to populate the plateau in $rm [Fe/H]$ at the faintest end of the mass-metallicity relation.
211 - I. Ferreras 2015
Spectroscopic analyses of gravity-sensitive line strengths give growing evidence towards an excess of low-mass stars in massive early-type galaxies (ETGs). Such a scenario requires a bottom-heavy initial mass function (IMF). However, strong constrain ts can be imposed if we take into account galactic chemical enrichment. We extend the analysis of Weidner et al. and consider the functional form of bottom-heavy IMFs used in recent works, where the high-mass end slope is kept fixed to the Salpeter value, and a free parameter is introduced to describe the slope at stellar masses below some pivot mass scale (M<MP=0.5Msun). We find that no such time-independent parameterisation is capable to reproduce the full set of constraints in the stellar populations of massive ETGs - resting on the assumption that the analysis of gravity-sensitive line strengths leads to a mass fraction at birth in stars with mass M<0.5Msun above 60%. Most notably, the large amount of metal-poor gas locked in low-mass stars during the early, strong phases of star formation results in average stellar metallicities [M/H]<-0.6, well below the solar value. The conclusions are unchanged if either the low-mass end cutoff, or the pivot mass are left as free parameters, strengthening the case for a time-dependent IMF.
We present radiation-magneto-hydrodynamic simulations of star formation in self-gravitating, turbulent molecular clouds, modeling the formation of individual massive stars, including their UV radiation feedback. The set of simulations have cloud mass es between $m_{rm gas}=10^3$~M$_odot$ to $3 times 10^5$~M$_odot$ and gas densities typical of clouds in the local universe ($overline n_{rm gas} sim 1.8times 10^2$~cm$^{-3}$) and 10$times$ and 100$times$ denser, expected to exist in high-redshift galaxies. The main results are: {it i}) The observed Salpeter power-law slope and normalisation of the stellar initial mass function at the high-mass end can be reproduced if we assume that each star-forming gas clump (sink particle) fragments into stars producing on average a maximum stellar mass about $40%$ of the mass of the sink particle, while the remaining $60%$ is distributed into smaller mass stars. Assuming that the sinks fragment according to a power-law mass function flatter than Salpeter, with log-slope $0.8$, satisfy this empirical prescription. {it ii}) The star formation law that best describes our set of simulation is $drho_*/dt propto rho_{gas}^{1.5}$ if $overline n_{gas}<n_{cri}approx 10^3$~cm$^{-3}$, and $drho_*/dt propto rho_{rm gas}^{2.5}$ otherwise. The duration of the star formation episode is roughly $6$ clouds sound crossing times (with $c_s=10$~km/s). {it iii}) The total star formation efficiency in the cloud is $f_*=2% (m_{rm gas}/10^4~M_odot)^{0.4}(1+overline n_{rm gas}/n_{rm cri})^{0.91}$, for gas at solar metallicity, while for metallicity $Z<0.1$~Z$_odot$, based on our limited sample, $f_*$ is reduced by a factor of $sim 5$. {it iv)} The most compact and massive clouds appear to form globular cluster progenitors, in the sense that star clusters remain gravitationally bound after the gas has been expelled.
In this contribution we focus on results from chemical evolution models for the solar neighbourhood obtained by varying the IMF. Results for galaxies of different morphological type are discussed as well. They argue against a universal IMF independent of star forming conditions.
130 - S. Goswami , A. Slemer , P. Marigo 2021
There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to addr ess this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair-instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi ~ 350 Msun, by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code we analyse the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we focus on the [O/Fe] ratio which best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ~ 100 Msun, we can reproduce various observational constraints for thin-disc stars, but the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 Msun and including the chemical ejecta of very massive stars, in the form of winds and pair-instability supernova explosions.Our study indicates that PISN played a significant role in shaping the chemical evolution of the Milky Way thick disc. By including their chemical yields it is easier to reproduce not only the level of the alpha-enhancement but also the observed slope of thick-disc stars in the [O/Fe] vs [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in chemical evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا