ترغب بنشر مسار تعليمي؟ اضغط هنا

Gyrotropic Zener tunneling and nonlinear IV curves in the zero-energy Landau level of graphene in a strong magnetic field

92   0   0.0 ( 0 )
 نشر من قبل Pertti Hakonen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated tunneling current through a suspended graphene Corbino disk in high magnetic fields at the Dirac point, i.e. at filling factor $ u$ = 0. At the onset of the dielectric breakdown the current through the disk grows exponentially before ohmic behaviour, but in a manner distinct from thermal activation. We find that Zener tunneling between Landau sublevels dominates, facilitated by tilting of the source-drain bias potential. According to our analytic modelling, the Zener tunneling is strongly affected by the gyrotropic force (Lorentz force) due to the high magnetic field



قيم البحث

اقرأ أيضاً

The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high field regime, the eight-fold degeneracy in the zero energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding filling factors $ u=$0, 1, 2, & 3. Measurements of the activation energy gap in tilted magnetic fields suggest that the Landau level splitting at the newly formed $ u=$1, 2, & 3 filling factors are independent of spin, consistent with the formation of a quantum Hall ferromagnet. In addition, measurements taken at the $ u$ = 0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.
80 - Y. Zhang 2006
The quantum Hall (QH) effect in two-dimensional (2D) electrons and holes in high quality graphene samples is studied in strong magnetic fields up to 45 T. QH plateaus at filling factors $ u=0,pm 1,pm 4$ are discovered at magnetic fields $B>$20 T, ind icating the lifting of the four-fold degeneracy of the previously observed QH states at $ u=pm(|n|+1/2)$, where $n$ is the Landau level index. In particular, the presence of the $ u=0, pm 1$ QH plateaus indicates that the Landau level at the charge neutral Dirac point splits into four sublevels, lifting sublattice and spin degeneracy. The QH effect at $ u=pm 4$ is investigated in tilted magnetic field and can be attributed to lifting of the spin-degeneracy of the $n=1$ Landau level.
Graphene in the quantum Hall regime exhibits a multi-component structure due to the electronic spin and chirality degrees of freedom. While the applied field breaks the spin symmetry explicitly, we show that the fate of the chirality SU(2) symmetry i s more involved: the leading symmetry-breaking terms differ in origin when the Hamiltonian is projected onto the central (n=0) rather than any of the other Landau levels. Our description at the lattice level leads to a Harper equation; in its continuum limit, the ratio of lattice constant a and magnetic length l_B assumes the role of a small control parameter in different guises. The leading symmetry-breaking terms are direct (n=0) and exchange (n different from 0) terms, which are algebraically small in a/l_B. We comment on the Haldane pseudopotentials for graphene, and evaluate the easy-plane anisotropy of the graphene ferromagnet.
At high magnetic fields, monolayer graphene hosts competing phases distinguished by their breaking of the approximate SU(4) isospin symmetry. Recent experiments have observed an even denominator fractional quantum Hall state thought to be associated with a transition in the underlying isospin order from a spin-singlet charge density wave at low magnetic fields to an antiferromagnet at high magnetic fields, implying that a similar transition must occur at charge neutrality. However, this transition does not generate contrast in typical electrical transport or thermodynamic measurements and no direct evidence for it has been reported, despite theoretical interest arising from its potentially unconventional nature. Here, we measure the transmission of ferromagnetic magnons through the two dimensional bulk of clean monolayer graphene. Using spin polarized fractional quantum Hall states as a benchmark, we find that magnon transmission is controlled by the detailed properties of the low-momentum spin waves in the intervening Hall fluid, which is highly density dependent. Remarkably, as the system is driven into the antiferromagnetic regime, robust magnon transmission is restored across a wide range of filling factors consistent with Pauli blocking of fractional quantum hall spin-wave excitations and their replacement by conventional ferromagnetic magnons confined to the minority graphene sublattice. Finally, using devices in which spin waves are launched directly into the insulating charge-neutral bulk, we directly detect the hidden phase transition between bulk insulating charge density wave and a canted antiferromagnetic phases at charge neutrality, completing the experimental map of broken-symmetry phases in monolayer graphene.
A simple mechanical analog describing Landau-Zener tunneling effect is proposed using two weakly coupled chains of nonlinear oscillators with gradually decreasing (first chain) and increasing (second chain) masses. The model allows to investigate non linear generalization of Landau-Zener tunneling effect considering soliton propagation and tunneling between the chains. It is shown that soliton tunneling characteristics become drastically dependent on its amplitude in nonlinear regime. The validity of the developed tunneling theory is justified via comparison with direct numerical simulations on oscillator ladder system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا