ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization-group theory of the abnormal singularities at the critical-order transition in bond percolation on pointed hierarchical graphs

120   0   0.0 ( 0 )
 نشر من قبل Tomoaki Nogawa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tomoaki Nogawa




اسأل ChatGPT حول البحث

We study the singularity of the order parameter at the transition between a critical phase and an ordered phase of bond percolation on pointed hierarchical graphs. In pointed hierarchical graphs, the renormalization group (RG) equation explicitly depends on the bare parameter, which causes the phase transitions that correspond to the bifurcation of the RG fixed point. We derive the relation between the type of this bifurcation and the type of the singularity of the order parameter. In the case of a saddle node bifurcation, the singularity of the order parameter is power-law or essential one depending on the fundamental local structure of the graph. In the case of pitchfork and transcritical bifurcations, the singularity is essential and power-law ones, respectively. These becomes power-law and discontinuous ones, respectively, in the absence of the first-order perturbation to the largest eigenvalue of the combining matrix, which gives the growth rate of the cluster size. We also show that the first-order perturbation vanishes if the relevant RG parameter is unique and the backbone of the pointed hierarchical graph is simply connected via nesting subunits.



قيم البحث

اقرأ أيضاً

We study bond percolation of the Cayley tree (CT) by focusing on the probability distribution function (PDF) of a local variable, namely, the size of the cluster including a selected vertex. Because the CT does not have a dominant bulk region, which is free from the boundary effect, even in the large-size limit, the phase of the system on it is not well defined. We herein show that local observation is useful to define the phase of such a system in association with the well-defined phase of the system on the Bethe lattice, that is, an infinite regular tree without boundary. Above the percolation threshold, the PDFs of the vertex at the center of the CT (the origin) and of the vertices near the boundary of the CT (the leaves) have different forms, which are also dissimilar to the PDF observed in the ordinary percolating phase of a Euclidean lattice. The PDF for the origin of the CT is bimodal: a decaying exponential function and a system-size-dependent asymmetric peak, which obeys a finite-size-scaling law with a fractal exponent. These modes are respectively related to the PDFs of the finite and infinite clusters in the nonuniqueness phase of the Bethe lattice. On the other hand, the PDF for the leaf of the CT is a decaying power function. This is similar to the PDF observed at a critical point of a Euclidean lattice but is attributed to the nesting structure of the CT around the boundary.
We study bond percolation on a one-parameter family of hierarchical small-world network, and find a meta-transition between the inverted BKT transition and the abrupt transition driven by changing the network topology. It is found that the order para meter is continuous and fractal exponent is discontinuous in the inverted BKT transition, and oppositely, the former is discontinuous and the latter is continuous in the abrupt transition. The gaps of the order parameter and fractal exponent in each transition go to vanish as approaching the meta-transition point. This point corresponds to a marginal power-law transition. In the renormalization group formalism, this meta-transition corresponds to the transition between transcritical and saddle-node bifurcations of the fixed point via a pitchfork bifurcation.
143 - Eser Aygun , Ayse Erzan 2011
Discrete amorphous materials are best described in terms of arbitrary networks which can be embedded in three dimensional space. Investigating the thermodynamic equilibrium as well as non-equilibrium behavior of such materials around second order pha se transitions call for special techniques. We set up a renormalization group scheme by expanding an arbitrary scalar field living on the nodes of an arbitrary network, in terms of the eigenvectors of the normalized graph Laplacian. The renormalization transformation involves, as usual, the integration over the more rapidly varying components of the field, corresponding to eigenvectors with larger eigenvalues, and then rescaling. The critical exponents depend on the particular graph through the spectral density of the eigenvalues.
We present some exact results on bond percolation. We derive a relation that specifies the consequences for bond percolation quantities of replacing each bond of a lattice $Lambda$ by $ell$ bonds connecting the same adjacent vertices, thereby yieldin g the lattice $Lambda_ell$. This relation is used to calculate the bond percolation threshold on $Lambda_ell$. We show that this bond inflation leaves the universality class of the percolation transition invariant on a lattice of dimensionality $d ge 2$ but changes it on a one-dimensional lattice and quasi-one-dimensional infinite-length strips. We also present analytic expressions for the average cluster number per vertex and correlation length for the bond percolation problem on the $N to infty$ limits of several families of $N$-vertex graphs. Finally, we explore the effect of bond vacancies on families of graphs with the property of bounded diameter as $N to infty$.
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o f Zhang $textit{et al.}$ [1] and Goremykina $textit{et al.}$ [2], which are based on thermal and insulating blocks. Our main addition is to characterize each insulating block with two lengths: a physical length, and an internal decay length $zeta$ for its effective interactions. In this approach, the MBL phase is governed by a RG fixed line that is parametrized by a global decay length $tilde{zeta}$, and the rare large thermal inclusions within the MBL phase have a fractal geometry. As the phase transition is approached from within the MBL phase, $tilde{zeta}$ approaches the finite critical value corresponding to the avalanche instability, and the fractal dimension of large thermal inclusions approaches zero. Our analysis is consistent with a Kosterlitz-Thouless-like RG flow, with no intermediate critical MBL phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا