ﻻ يوجد ملخص باللغة العربية
We investigate roles of magnetic activity in the Galactic bulge region in driving large-scale outflows of size $sim 10$ kpc. Magnetic buoyancy and breakups of channel flows formed by magnetorotational instability excite Poynting flux by the magnetic tension force. A three-dimensional global numerical simulation shows that the average luminosity of such Alfvenic Poynting flux is $10^{40} - 10^{41}$ erg s$^{-1}$. We examine the energy and momentum transfer from the Poynting flux to the gas by solving time-dependent hydrodynamical simulations with explicitly taking into account low-frequency Alfvenic waves of period of 0.5 Myr in a one-dimensional vertical magnetic flux tube. The Alfvenic waves propagate upward into the Galactic halo, and they are damped through the propagation along meandering magnetic field lines. If the turbulence is nearly trans-Alfv{e}nic, the wave damping is significant, which leads to the formation of an upward propagating shock wave. At the shock front, the temperature $gtrsim 5times 10^6$ K, the density $approx 6times 10^{-4}$ cm$^{-3}$, and the outflow velocity $approx 400-500$ km s$^{-1}$ at a height $approx 10$ kpc, which reasonably explain the basic physical properties of the thermal component of the Fermi bubbles.
We study magnetically powered relativistic outflows in which a part of the magnetic energy is dissipated internally by reconnection. For GRB parameters, and assuming that the reconnection speed scales with the Alfven speed, significant dissipation ca
Using hydrodynamical simulations, we show for the first time that an episode of star formation in the center of the Milky Way, with a star-formation-rate (SFR) $sim 0.5$ M$_odot$ yr$^{-1}$ for $sim 30$ Myr, can produce bubbles that resemble the Fermi
There are two spectacular structures in our Milky Way: the {it Fermi} bubbles in gamma-ray observations and the North Polar Spur (NPS) structure in X-ray observations. Because of their morphological similarities, they may share the same origin, i.e.,
We investigate the production of the gamma-ray spectrum of a Poynting-flux dominated GRB ouflow. The very high magnetic field strengths (super-equipartition) in such a flow lead to very efficient synchrotron emission. In contrast with internal shocks
Merging binaries of compact relativistic objects (neutron stars and black holes) are thought to be progenitors of short gamma-ray bursts and sources of gravitational waves, hence their study is of great importance for astrophysics. Because of the str