ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysical Data Analytics based on Neural Gas Models, using the Classification of Globular Clusters as Playground

280   0   0.0 ( 0 )
 نشر من قبل Massimo Brescia Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Astrophysics, the identification of candidate Globular Clusters through deep, wide-field, single band HST images, is a typical data analytics problem, where methods based on Machine Learning have revealed a high efficiency and reliability, demonstrating the capability to improve the traditional approaches. Here we experimented some variants of the known Neural Gas model, exploring both supervised and unsupervised paradigms of Machine Learning, on the classification of Globular Clusters, extracted from the NGC1399 HST data. Main focus of this work was to use a well-tested playground to scientifically validate such kind of models for further extended experiments in astrophysics and using other standard Machine Learning methods (for instance Random Forest and Multi Layer Perceptron neural network) for a comparison of performances in terms of purity and completeness.

قيم البحث

اقرأ أيضاً

Within scientific and real life problems, classification is a typical case of extremely complex tasks in data-driven scenarios, especially if approached with traditional techniques. Machine Learning supervised and unsupervised paradigms, providing se lf-adaptive and semi-automatic methods, are able to navigate into large volumes of data characterized by a multi-dimensional parameter space, thus representing an ideal method to disentangle classes of objects in a reliable and efficient way. In Astrophysics, the identification of candidate Globular Clusters through deep, wide-field, single band images, is one of such cases where self-adaptive methods demonstrated a high performance and reliability. Here we experimented some variants of the known Neural Gas model, exploring both supervised and unsupervised paradigms of Machine Learning for the classification of Globular Clusters. Main scope of this work was to verify the possibility to improve the computational efficiency of the methods to solve complex data-driven problems, by exploiting the parallel programming with GPU framework. By using the astrophysical playground, the goal was to scientifically validate such kind of models for further applications extended to other contexts.
We present an application of self-adaptive supervised learning classifiers derived from the Machine Learning paradigm, to the identification of candidate Globular Clusters in deep, wide-field, single band HST images. Several methods provided by the D AME (Data Mining & Exploration) web application, were tested and compared on the NGC1399 HST data described in Paolillo 2011. The best results were obtained using a Multi Layer Perceptron with Quasi Newton learning rule which achieved a classification accuracy of 98.3%, with a completeness of 97.8% and 1.6% of contamination. An extensive set of experiments revealed that the use of accurate structural parameters (effective radius, central surface brightness) does improve the final result, but only by 5%. It is also shown that the method is capable to retrieve also extreme sources (for instance, very extended objects) which are missed by more traditional approaches.
Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on 9 simulated classes of gravitational wave transients and also LIGOs sixth science run hardware injections are reported. Targeted searches for a couple of known classes of non-astrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.
With the advent of interferometric instruments with 4 telescopes at the VLTI and 6 telescopes at CHARA, the scientific possibility arose to routinely obtain milli-arcsecond scale images of the observed targets. Such an image reconstruction process is typically performed in a Bayesian framework where the function to minimize is made of two terms: the datalikelihood and the Bayesian prior. This prior should be based on our prior knowledge of the observed source. Up to now,this prior was chosen from a set of generic and arbitrary functions, such as total variation for example. Here, we present an image reconstruction framework using generative adversarial networks where the Bayesian prior is defined using state-of-the-art radiative transfer models of the targeted objects. We validate this new image reconstruction algorithm on synthetic data with added noise. The generated images display a drastic reduction of artefacts and allow a more straight forward astrophysical interpretation. The results can be seen as a first illustration of how neural networks can provide significant improvements to the image reconstruction of a variety of astrophysical sources.
We use NSFs Karl G. Jansky Very Large Array to constrain the mass of ionized gas in 206 globular star clusters (GCs) in M81, a nearby spiral galaxy. We detect none of the GCs and impose a typical gas-mass upper limit of 550 solar masses (3-sigma). These findings bear on GC evolution in M81.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا