ترغب بنشر مسار تعليمي؟ اضغط هنا

The JCMT Transient Survey: Identifying Submillimetre Continuum Variability over Several Year Timescales Using Archival JCMT Gould Belt Survey Observations

182   0   0.0 ( 0 )
 نشر من قبل Steve Mairs
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Investigating variability at the earliest stages of low-mass star formation is fundamental in understanding how a protostar assembles mass. While many simulations of protostellar disks predict non-steady accretion onto protostars, deeper investigation requires robust observational constraints on the frequency and amplitude of variability events characterised across the observable SED. In this study, we develop methods to robustly analyse repeated observations of an area of the sky for submillimetre variability in order to determine constraints on the magnitude and frequency of deeply embedded protostars. We compare mbox{850 $mu$m} JCMT Transient Survey data with archival JCMT Gould Belt Survey data to investigate variability over 2-4 year timescales. Out of 175 bright, independent emission sources identified in the overlapping fields, we find 7 variable candidates, 5 of which we classify as textit{Strong} and the remaining 2 as textit{Extended} to indicate the latter are associated with larger-scale structure. For the textit{Strong} variable candidates, we find an average fractional peak brightness change per year of |4.0|% yr$^{-1}$ with a standard deviation of $2.7%mathrm{:yr}^{-1}$. In total, 7% of the protostars associated with mbox{850 $mu$m} emission in our sample show signs of variability. Four of the five textit{Strong} sources are associated with a known protostar. The remaining source is a good follow-up target for an object that is anticipated to contain an enshrouded, deeply embedded protostar. In addition, we estimate the mbox{850 $mu$m} periodicity of the submillimetre variable source, EC 53, to be mbox{567 $pm$ 32 days} based on the archival Gould Belt Survey data.



قيم البحث

اقرأ أيضاً

Using JCMT Gould Belt Survey data from CO J=3-2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is ev idence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.
The JCMT Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering propertie s of these cores, including the two-point correlation function and Cartwrights Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Sigma technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.
We present the four-year survey results of monthly submillimeter monitoring of eight nearby ($< 500 $pc) star-forming regions by the JCMT Transient Survey. We apply the Lomb-Scargle Periodogram technique to search for and characterize variability on 295 submillimeter peaks brighter than 0.14 Jy beam$^{-1}$, including 22 disk sources (Class II), 83 protostars (Class 0/I), and 190 starless sources. We uncover 18 secular variables, all of them protostars. No single-epoch burst or drop events and no inherently stochastic sources are observed. We classify the secular variables by their timescales into three groups: Periodic, Curved, and Linear. For the Curved and Periodic cases, the detectable fractional amplitude, with respect to mean peak brightness, is $sim4$ % for sources brighter than $sim$ 0.5 Jy beam$^{-1}$. Limiting our sample to only these bright sources, the observed variable fraction is 37 % (16 out of 43). Considering source evolution, we find a similar fraction of bright variables for both Class 0 and Class I. Using an empirically motivated conversion from submillimeter variability to variation in mass accretion rate, six sources (7 % of our full sample) are predicted to have years-long accretion events during which the excess mass accreted reaches more than 40 % above the total quiescently accreted mass: two previously known eruptive Class I sources, V1647 Ori and EC 53 (V371 Ser), and four Class 0 sources, HOPS 356, HOPS 373, HOPS 383, and West 40. Considering the full protostellar ensemble, the importance of episodic accretion on few years timescale is negligible, only a few percent of the assembled mass. However, given that this accretion is dominated by events of order the observing time-window, it remains uncertain as to whether the importance of episodic events will continue to rise with decades-long monitoring.
We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2 024, and NGC 2068/2071 respectively, using the SCUBA-2 850 micron map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 micron peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 x 10^23 cm^-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 x 10^23 cm^-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023 / 2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.
We present the JCMT Gould Belt Surveys first look results of the southern extent of the Orion A Molecular Cloud ($delta leq -5mathrm{:}31mathrm{:}27.5$). Employing a two-step structure identification process, we construct individual catalogues for la rge-scale regions of significant emission labelled as islands and smaller-scale subregions called fragments using the 850 $mu$m continuum maps obtained using SCUBA-2. We calculate object masses, sizes, column densities, and concentrations. We discuss fragmentation in terms of a Jeans instability analysis and highlight interesting structures as candidates for follow-up studies. Furthermore, we associate the detected emission with young stellar objects (YSOs) identified by Spitzer and Herschel. We find that although the population of active star-forming regions contains a wide variety of sizes and morphologies, there is a strong positive correlation between the concentration of an emission region and its calculated Jeans instability. There are, however, a number of highly unstable subregions in dense areas of the map that show no evidence of star formation. We find that only $sim$72% of the YSOs defined as Class 0+I and flat-spectrum protostars coincide with dense 850 $mu$m emission structures (column densities $>3.7times10^{21}mathrm{:cm}^{-2}$). The remaining 28% of these objects, which are expected to be embedded in dust and gas, may be misclassified. Finally, we suggest that there is an evolution in the velocity dispersion of young stellar objects such that sources which are more evolved are associated with higher velocities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا