ﻻ يوجد ملخص باللغة العربية
We investigate the performance of several continuous-variable quantum key distribution protocols in the presence of fading channels. These are lossy channels whose transmissivity changes according to a probability distribution. This is typical in communication scenarios where remote parties are connected by free-space links subject to atmospheric turbulence. In this work, we assume the worst-case scenario where an eavesdropper has full control of a fast fading process, so that she chooses the instantaneous transmissivity of a channel, while the remote parties can only detect the mean statistical process. In our study, we consider coherent-state protocols run in various configurations, including the one-way switching protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration and a three-party measurement-device-independent network. We show that, regardless of the advantage given to the eavesdropper (full control of fading), these protocols can still achieve high rates.
Continuous-variable quantum key distribution (CV-QKD) with discrete modulation has received widespread attentions because of its experimental simplicity, lower-cost implementation and ease to multiplex with classical optical communication. Recently,
Information reconciliation is crucial for continuous-variable quantum key distribution (CV-QKD) because its performance affects the secret key rate and maximal secure transmission distance. Fixed-rate error correction codes limit the potential applic
Quantum key distribution (QKD) which enables the secure distribution of symmetric keys between two legitimate parties is of great importance in future network security. Access network that connects multiple end-users with one network backbone can be
We investigate the performance of Gaussianmodulated coherent-state QKD protocols in the presence of canonical attacks, which are collective Gaussian attacks resulting in Gaussian channels described by one of the possible canonical forms. We present a
The continuous-variable quantum key distribution with entanglement in the middle, a semi-device-independent protocol, places the source at the untrusted third party between Alice and Bob, and thus has the advantage of high levels of security with the