ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric phonon glass electron crystal via ion beam patterning of silicon

59   0   0.0 ( 0 )
 نشر من قبل Taishan Zhu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ion beam irradiation has recently emerged as a versatile approach to functional materials design. We show in this work that patterned defective regions generated by ion beam irradiation of silicon can create a phonon glass electron crystal (PGEC), a longstanding goal of thermoelectrics. By controlling the effective diameter of and spacing between the defective regions, molecular dynamics simulations suggest a reduction of the thermal conductivity by a factor of $approx$20 is achievable. Boltzmann theory shows that the thermoelectric power factor remains largely intact in the damaged material. To facilitate the Boltzmann theory, we derive an analytical model for electron scattering with cylindrical defective regions based on partial wave analysis. Together we predict a figure of merit of ZT$approx$0.5 or more at room temperature for optimally patterned geometries of these silicon metamaterials. These findings indicate that nanostructuring of patterned defective regions in crystalline materials is a viable approach to realize a PGEC, and ion beam irradiation could be a promising fabrication strategy.

قيم البحث

اقرأ أيضاً

Type-I clathrate compounds have attracted a great deal of interest in connection with the search for efficient thermoelectric materials. These compounds constitute networked cages consisting of nano-scale tetrakaidecahedrons (14 hedrons) and dodecahe drons (12 hedrons), in which the group 1 or 2 elements in the periodic table are encaged as the so-called rattling guest atom. It is remarkable that, though these compounds have crystalline cubic-structure, they exhibit glass-like phonon thermal conductivity over the whole temperature range depending on the states of rattling guest atoms in the tetrakaidecahedron. In addition, these compounds show unusual glass-like specific heats and THz-frequency phonon dynamics, providing a remarkable broad peak almost identical to those observed in topologically disordered amorphous materials or structural glasses, the so-called Boson peak. An efficient thermoelectric effect is realized in compounds showing these glass-like characteristics. This decade, a number of experimental works dealing with type-I clathrate compounds have been published. These are diffraction experiments, thermal and spectroscopic experiments in addition to those based on heat and electronic transport. These form the raw materials for this article based on advances this decade. The subject of this article involves interesting phenomena from the viewpoint of not only physics but also from the view point of the practical problem of elaborating efficient thermoelectric materials. This review presents a survey of a wide range of experimental investigations of type-I clathrate compounds, together with a review of theoretical interpretations of the peculiar thermal and dynamic properties observed in these materials.
In most materials, transport can be described by the motion of distinct species of quasiparticles, such as electrons and phonons. Strong interactions between quasiparticles, however, can lead to collective behaviour, including the possibility of visc ous hydrodynamic flow. In the case of electrons and phonons, an electron-phonon fluid is expected to exhibit strong phonon-drag transport signatures and an anomalously low thermal conductivity. The Dirac semi-metal PtSn4 has a very low resistivity at low temperatures and shows a pronounced phonon drag peak in the low temperature thermopower; it is therefore an excellent candidate for hosting a hydrodynamic electron-phonon fluid. Here we report measurements of the temperature and magnetic field dependence of the longitudinal and Hall electrical resistivities, the thermopower and the thermal conductivity of PtSn4. We confirm a phonon drag peak in the thermopower near 14 K and observe a concurrent breakdown of the Lorenz ratio below the Sommerfeld value. Both of these facts are expected for an electron-phonon fluid with a quasi-conserved total momentum. A hierarchy between momentum-conserving and momentum-relaxing scattering timescales is corroborated through measurements of the magnetic field dependence of the electrical and Hall resistivity and of the thermal conductivity. These results show that PtSn4 exhibits key features of hydrodynamic transport.
This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror-pattern on the sample sur face, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime, where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10-40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series of model experiments, which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modelling is presented, in which surface swelling measurements are correlated to buried crystal damage. A comparison is made with data for light ion implantations, showing good compatibility with the proposed models. The modelling presented in this work can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing to generate highly customized structures by combining appropriately chosen irradiation parameters and masks.
Coherent grazing-incidence small-angle X-ray scattering is used to investigate the average kinetics and the fluctuation dynamics during self-organized nanopatterning of silicon by Ar$^+$ bombardment at 65$^{circ}$ polar angle. At early times, the sur face behavior can be understood within the framework of linear theory. The transition away from the linear theory behavior is observed in the dynamics through the intensity correlation function. It quickly evolves to exhibit stretched exponential decay on short length scales and compressed exponential decay on length scales corresponding the dominant structural length scale - the ripple wavelength. The correlation times also peak strongly at the ripple length scale. This behavior has notable similarities but also significant differences with the phenomenon of de Gennes narrowing. Overall, this dynamics behavior is found to be consistent with simulations of a nonlinear growth model.
Despite extensive study, fundamental understanding of self-organized patterning by broad-beam ion bombardment is still incomplete and controversial. Understanding the nanopatterning of elemental semiconductors, particularly silicon, is both foundatio nal for the broader field and of intrinsic scientific and technological interest itself. This is the second component of a two-part investigation of the kinetics and fluctuation dynamics of self-organized nanoscale ripple development on silicon during 1 keV Ar$^+$ (Part I) and Kr$^+$ bombardment. Here, its found that the ion-enhanced viscous flow relaxation is essentially equal for Kr$^+$-induced patterning as previously found for Ar$^+$ patterning. The magnitude of the surface curvature dependent roughening rate in the early stage kinetics is larger for Kr$^+$ than for Ar$^+$, qualitatively consistent with expectations for erosive and mass redistributive contributions to the initial surface instability. As with the Ar$^+$ case, fluctuation dynamics in the late stage show a peak in correlation time at the length scale corresponding to the dominant structural feature on the surface -- the ripples. Analogy is made to the phenomenon of de Gennes narrowing in liquids, but significant differences are also pointed out. Finally, its shown that speckle motion during the surface evolution can be analyzed to determine spatial inhomogeneities in erosion rate and ripple velocity on the surface. This allows the direction and speed of ripple motion to be measured in real time, a unique capability for measuring these fundamental parameters outside the specialized environment of FIB/SEM systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا