ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle-level model for radar based detection of high-energy neutrino cascades

93   0   0.0 ( 0 )
 نشر من قبل Steven Prohira
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a particle-level model for calculating the radio scatter of incident RF radiation from the plasma formed in the wake of a particle shower. We incorporate this model into a software module (RadioScatter), which calculates the collective scattered signal using the individual particle equations of motion, accounting for plasma effects, transmitter and receiver geometries, refraction at boundaries, and antenna gain patterns. We find appreciable collective scattering amplitudes with coherent phase for a range of geometries, with high geometric and volumetric acceptance. Details of the calculation are discussed, as well as the implementation of RadioScatter into GEANT4. A laboratory test of our model, currently scheduled at SLAC in 2018, with the goal of measuring the time-dependent characteristics of the reflecting plasma, is also described. Prospects for a future in-ice, high-energy neutrino detector, along with comparison to current detection strategies, are presented.

قيم البحث

اقرأ أيضاً

We report the observation of radar echoes from the ionization trails of high-energy particle cascades. These data were taken at the SLAC National Accelerator Laboratory, where the full electron beam ($sim$10$^9$ e$^-$ at $sim$10 GeV/e$^-$) was direct ed into a plastic target to simulate an ultra high-energy neutrino interaction. This target was interrogated with radio waves, and coherent radio reflections from the cascades were detected, with properties consistent with theoretical expectations. This is the first definitive observation of radar echoes from high-energy particle cascades, which may lead to a viable neutrino detection technology for energies $gtrsim 10^{16}$ eV.
In recent works we discussed the feasibility of the radar detection technique as a new method to probe high-energy cosmic-neutrino induced plasmas in ice. Using the different properties of the induced ionization plasma, an energy threshold of several PeV was derived for the over-dense scattering of a radio wave off the plasma. Next to this energy threshold the radar return power was determined for the different constituents of the plasma. It followed that the return signal should be detectable at a distance of several hundreds of meters to a few kilometers, depending on the plasma constituents and considered geometry. In this article we describe a more detailed modeling of the scattering process by expanding our model to include the full shower geometry, as well as the reflection off the under-dense plasma region. We include skin-effects, as well as the angular dependence of the scattered signal. As a first application of this more detailed modeling approach, we provide the effective area and sensitivity for a simplified detector setup. It follows that, depending on the detailed plasma properties, the radar detection technique provides a very promising method for the detection of neutrino induced particle cascades at energies above several PeV. Nevertheless, to determine the feasibility of the method more detailed information about the plasma properties, especially its lifetime and the free charge collision rate, are needed.
62 - G. Orr , M. Azoulay , G. Golan 2021
GaN high electron mobility transistors (HEMT) have gained some foothold in the power electronics industry due to wide frequency bandwidth and power handling. The material offers a wide bandgap and higher critical field strength compared to most wide bandgap semiconductors, resulting in better radiation resistance and theoretically higher speeds as the devices dimensions could be reduced without suffering voltage breakdown. This work consists of the underlying simulation work intended to examine the response of the GaN HEMTs preamlifying circuits for high resolution high energy radiation detectors. The simulation and experimental results illustrate the superior performance of the GaN HEMT in an amplifying circuit. Using a spice model for a commercially available GaN HEMT non distorted output to an input signal of 200 ps was displayed. Real world measurements underscore the fast response of the GaN HEMT with its measured slew rate at approximately 3000 V /{mu}s a result only 17% lower than the result obtained from the simulation.
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const ruction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
DEPFET pixel detectors are unique devices in terms of energy and spatial resolution because very low noise (ENC = 2.2e at room temperature) operation can be obtained by implementing the amplifying transistor in the pixel cell itself. Full DEPFET pixe l matrices have been built and operated for autoradiographical imaging with imaging resolutions of 4.3 +- 0.8 um at 22 keV. For applications in low energy X-ray astronomy the high energy resolution of DEPFET detectors is attractive. For particle physics, DEPFET pixels are interesting as low material detectors with high spatial resolution. For a Linear Collider detector the readout must be very fast. New readout chips have been designed and produced for the development of a DEPFET module for a pixel detector at the proposed TESLA collider (520x4000 pixels) with 50 MHz line rate and 25 kHz frame rate. The circuitry contains current memory cells and current hit scanners for fast pedestal subtraction and sparsified readout. The imaging performance of DEPFET devices as well as present achievements towards a DEPFET vertex detector for a Linear Collider are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا