ﻻ يوجد ملخص باللغة العربية
Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use Renormalization Group (RG) ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA) and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference and have been improved after. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reduction of the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.
In lattice quantum field theory studies, parameters defining the lattice theory must be tuned toward criticality to access continuum physics. Commonly used Markov chain Monte Carlo (MCMC) methods suffer from critical slowing down in this limit, restr
This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows. The ideas and approaches proposed in arXiv:1904.12072, arXiv:2002.02428,
We propose an unconventional formulation of lattice field theories which is quite general, although originally motivated by the quest of exact lattice supersymmetry. Two long standing problems have a solution in this context: 1) Each degree of freedo
Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of methods to construct flow models for ta
We propose a lattice field theory formulation which overcomes some fundamental difficulties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the s