ترغب بنشر مسار تعليمي؟ اضغط هنا

RG inspired Machine Learning for lattice field theory

145   0   0.0 ( 0 )
 نشر من قبل Yannick Meurice
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use Renormalization Group (RG) ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA) and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference and have been improved after. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reduction of the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.



قيم البحث

اقرأ أيضاً

89 - Gurtej Kanwar 2021
In lattice quantum field theory studies, parameters defining the lattice theory must be tuned toward criticality to access continuum physics. Commonly used Markov chain Monte Carlo (MCMC) methods suffer from critical slowing down in this limit, restr icting the precision of continuum extrapolations. Further difficulties arise when measuring correlation functions of operators widely separated in spacetime: for most correlation functions, an exponentially severe signal-to-noise problem is encountered as the operators are taken to be widely separated. This dissertation details two new techniques to address these issues. First, we define a novel MCMC algorithm based on generative flow-based models. Such models utilize machine learning methods to describe efficient approximate samplers for distributions of interest. Independently drawn flow-based samples are then used as proposals in an asymptotically exact Metropolis-Hastings Markov chain. We address incorporating symmetries of interest, including translational and gauge symmetries. We secondly introduce an approach to deform Monte Carlo estimators based on contour deformations applied to the domain of the path integral. The deformed estimators associated with an observable give equivalent unbiased measurements of that observable, but generically have different variances. We define families of deformed manifolds for lattice gauge theories and introduce methods to efficiently optimize the choice of manifold (the observifold), minimizing the deformed observable variance. Finally, we demonstrate that flow-based MCMC can mitigate critical slowing down and observifolds can exponentially reduce variance in proof-of-principle applications to scalar $phi^4$ theory and $mathrm{U}(1)$ and $mathrm{SU}(N)$ lattice gauge theories.
This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows. The ideas and approaches proposed in arXiv:1904.12072, arXiv:2002.02428, and arXiv:2003.06413 are reviewed and a concrete implementation of the framework is presented. We apply this framework to a lattice scalar field theory and to U(1) gauge theory, explicitly encoding gauge symmetries in the flow-based approach to the latter. This presentation is intended to be interactive and working with the attached Jupyter notebook is recommended.
We propose an unconventional formulation of lattice field theories which is quite general, although originally motivated by the quest of exact lattice supersymmetry. Two long standing problems have a solution in this context: 1) Each degree of freedo m on the lattice corresponds to $2^d$ degrees of freedom in the continuum, but all these doublers have (in the case of fermions) the same chirality and can be either identified, thus removing the degeneracy, or, in some theories with extended supersymmetry, identified with different members of the same supermultiplet. 2) The derivative operator, defined on the lattice as a suitable periodic function of the lattice momentum, is an addittive and conserved quantity, thus assuring that the Leibnitz rule is satisfied. This implies that the product of two fields on the lattice is replaced by a non-local star product which is however in general non-associative. Associativity of the star product poses strong restrictions on the form of the lattice derivative operator (which becomes the inverse gudermannian function of the lattice momentum) and has the consequence that the degrees of freedom of the lattice theory and of the continuum theory are in one-to-one correspondence, so that the two theories are eventually equivalent. Regularization of the ultraviolet divergences on the lattice is not associated to the lattice spacing, which does not act as a regulator, but may be obtained by a one parameter deformation of the lattice derivative, thus preserving the lattice structure even in the limit of infinite momentum cutoff. However this regularization breaks gauge invariance and a gauge invariant regularization within the lattice formulation is still lacking.
Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of methods to construct flow models for ta rgets with multiple separated modes (i.e. theories with multiple vacua). We demonstrate the application of these methods to modeling two-dimensional real scalar field theory in its symmetry-broken phase. In this context we investigate the performance of different flow-based sampling algorithms, including a composite sampling algorithm where flow-based proposals are occasionally augmented by applying updates using traditional algorithms like HMC.
We propose a lattice field theory formulation which overcomes some fundamental difficulties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the s tar product, and the chiral fermion species doublers degrees of freedom can be avoided consistently. This framework is general enough to formulate non-supersymmetric lattice field theory without chiral fermion problem. This lattice formulation has a nonlocal nature and is essentially equivalent to the corresponding continuum theory. We can show that the locality of the star product is recovered exponentially in the continuum limit. Possible regularization procedures are proposed.The associativity of the product and the lattice translational invariance of the formulation will be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا