ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid type Ia supernova with an early flash triggered by helium-shell detonation

390   0   0.0 ( 0 )
 نشر من قبل Ji-An Jiang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of carbon-oxygen white dwarfs. Though the uniformity of their light curves makes them powerful cosmological distance indicators, long-standing issues remain regarding their progenitors and explosion mechanisms. Recent detection of the early ultraviolet pulse of a peculiar subluminous SN Ia has been claimed as new evidence for the companion-ejecta interaction through the single-degenerate channel. Here, we report the discovery of a prominent but red optical flash at $sim$ 0.5 days after the explosion of a SN Ia which shows hybrid features of different SN Ia sub-classes: a light curve typical of normal-brightness SNe Ia, but with strong titanium absorptions, commonly seen in the spectra of subluminous ones. We argue that the early flash of such a hybrid SN Ia is different from predictions of previously suggested scenarios such as the companion-ejecta interaction. Instead it can be naturally explained by a SN explosion triggered by a detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf ($gtrsim$ 1.3 M$_{odot}$) with low-yield $^{56}$Ni or on a sub-Chandrasekhar-mass white dwarf ($sim$ 1.0 M$_{odot}$) merging with a less massive white dwarf. This finding provides compelling evidence that one branch of the previously proposed explosion models, the helium-ignition scenario, does exist in nature, and such a scenario may account for explosions of white dwarfs in a wider mass range in contrast to what was previously supposed.

قيم البحث

اقرأ أيضاً

The double-detonation explosion model has been considered a candidate for explaining astrophysical transients with a wide range of luminosities. In this model, a carbon-oxygen white dwarf star explodes following detonation of a surface layer of heliu m. One potential signature of this explosion mechanism is the presence of unburned helium in the outer ejecta, left over from the surface helium layer. In this paper we present simple approximations to estimate the optical depths of important He I lines in the ejecta of double-detonation models. We use these approximations to compute synthetic spectra, including the He I lines, for double-detonation models obtained from hydrodynamical explosion simulations. Specifically, we focus on photospheric-phase predictions for the near-infrared 10830 AA~and 2 $mu$m lines of He I. We first consider a double detonation model with a luminosity corresponding roughly to normal SNe Ia. This model has a post-explosion unburned He mass of 0.03 $M_{odot}$ and our calculations suggest that the 2 $mu$m feature is expected to be very weak but that the 10830 AA~feature may have modest opacity in the outer ejecta. Consequently, we suggest that a moderate-to-weak He I 10830 AA~feature may be expected to form in double-detonation explosions at epochs around maximum light. However, the high velocities of unburned helium predicted by the model ($sim 19,000$~km~s$^{-1}$) mean that the He I 10830 AA~feature may be confused or blended with the C I 10690~AA~line forming at lower velocities. We also present calculations for the He I 10830 AA~and 2 $mu$m lines for a lower mass (low luminosity) double detonation model, which has a post-explosion He mass of 0.077 $M_{odot}$. In this case, both the He I features we consider are strong and can provide a clear observational signature of the double-detonation mechanism.
We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of $z=0.07$ implies an absolute magnitude in the rest-frame $I$-b and of M$_{I}sim-17.6$ mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths $<5000$ AA. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and double-detonation models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.
The detonation of a helium shell on top of a carbon-oxygen white dwarf has been argued as a potential explosion mechanism for type Ia supernovae (SNe~Ia). The ash produced during helium shell burning can lead to light curves and spectra that are inco nsistent with normal SNe~Ia, but may be viable for some objects showing a light curve bump within the days following explosion. We present a series of radiative transfer models designed to mimic predictions from double detonation explosion models. We consider a range of core and shell masses, and systematically explore multiple post-explosion compositions for the helium shell. We find that a variety of luminosities and timescales for early light curve bumps result from those models with shells containing $^{56}$Ni, $^{52}$Fe, or $^{48}$Cr. Comparing our models to SNe~Ia with light curve bumps, we find that these models can reproduce the shapes of almost all of the bumps observed, but only those objects with red colours around maximum light ($B-V gtrsim 1$) are well matched throughout their evolution. Consistent with previous works, we also show that those models in which the shell does not contain iron-group elements provide good agreement with normal SNe~Ia of different luminosities from shortly after explosion up to maximum light. While our models do not amount to positive evidence in favour of the double detonation scenario, we show that provided the helium shell ash does not contain iron-group elements, it may be viable for a wide range of normal SNe~Ia.
79 - F. K. Roepke 2006
We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different ini tial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.
Early observations of Type Ia supernovae (SNe$,$Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN$,$2019yvq, the second observed SN$,$Ia , after iPTF$,$14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN$,$2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN$,$Ia ($M_g approx -18.5,$mag at peak) yet featured very high absorption velocities ($v approx 15,000,mathrm{km,s}^{-1}$ for Si II $lambda$6355 at peak). We find that many of the observational features of SN$,$2019yvq, aside from the flash, can be explained if the explosive yield of radioactive $^{56}mathrm{Ni}$ is relatively low (we measure $M_{^{56}mathrm{Ni}} = 0.31 pm 0.05,M_odot$) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN$,$2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of $^{56}mathrm{Ni}$ in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN$,$2019yvq. In closing, we predict that the nebular spectra of SN$,$2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca II] emission, if it was a double detonation, or narrow [O I] emission, if it was due to a violent merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا