ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate zeros of difference polynomials of the form $f(z)^nH(z, f)-s(z)$, where $f(z)$ is a meromorphic function, $H(z, f)$ is a difference polynomial of $f(z)$ and $s(z)$ is a small function. We first obtain some inequalities for the relationship of the zero counting function of $f(z)^nH(z, f)-s(z)$ and the characteristic function and pole counting function of $f(z)$. Based on these inequalities, we establish some difference analogues of a classical result of Hayman for meromorphic functions. Some special cases are also investigated. These results improve previous findings.
In this paper we extend the concept of bi-univalent to the class of meromorphic functions. We propose to investigate the coefficient estimates for two classes of meromorphic bi-univalent functions. Also, we find estimates on the coefficients |b0| and
In this paper, we study the uniqueness of meromporphic functions and their difference operators. In particular, We have proved: Let $f$ be a nonconstant entire function on $mathbb{C}^{n}$, let $etain mathbb{C}^{n}$ be a nonzero complex number, and le
We introduce the class of analytic functions $$mathcal{F}(psi):= left{fin mathcal{A}: left(frac{zf(z)}{f(z)}-1right) prec psi(z),; psi(0)=0 right},$$ where $psi$ is univalent and establish the growth theorem with some geometric conditions on $psi$ an
In [Israel J. Math, 2014], Grahl and Nevo obtained a significant improvement for the well-known normality criterion of Montel. They proved that for a family of meromorphic functions $mathcal F$ in a domain $Dsubset mathbb C,$ and for a positive const
We give conditions characterizing holomorphic and meromorphic functions in the unit disk of the complex plane in terms of certain weak forms of the maximum principle. Our work is directly inspired by recent results of John Wermer, and by the theory o