ترغب بنشر مسار تعليمي؟ اضغط هنا

Widely tunable optical parametric oscillation in a Kerr microresonator

90   0   0.0 ( 0 )
 نشر من قبل Karen Webb
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first experimental demonstration of widely-tunable parametric sideband generation in a Kerr microresonator. Specifically, by pumping a silica microsphere in the normal dispersion regime, we achieve the generation of phase-matched four-wave mixing sidebands at large frequency detunings from the pump. Thanks to the role of higher-order dispersion in enabling phase matching, small variations of the pump wavelength translate into very large and controllable changes in the wavelengths of the generated sidebands: we experimentally demonstrate over 720 nm of tunability using a low-power continuous-wave pump laser in the C-band. We also derive simple theoretical predictions for the phase-matched sideband frequencies, and discuss the predictions in light of the discrete cavity resonance frequencies. Our experimentally measured sideband wavelengths are in very good agreement with theoretical predictions obtained from our simple phase matching analysis.

قيم البحث

اقرأ أيضاً

Parametric nonlinear optical processes allow for the generation of new wavelengths of coherent electromagnetic radiation. Their ability to create radiation that is widely tunable in wavelength is particularly appealing, with applications ranging from spectroscopy to quantum information processing. Unfortunately, existing tunable parametric sources are marred by deficiencies that obstruct their widespread adoption. Here we show that ultrahigh-Q crystalline microresonators made of magnesium fluoride can overcome these limitations, enabling compact and power-efficient devices capable of generating clean and widely-tunable sidebands. We consider several different resonators with carefully engineered dispersion profiles, achieving hundreds of nanometers of sideband tunability in each device when driven with a standard low-power laser at 1550 nm. In addition to direct observations of discrete tunability over an entire optical octave from 1083 nm to 2670 nm, we record signatures of mid-infrared sidebands at almost 4000 nm. The simplicity of the devices considered -- compounded by their remarkable tunability -- paves the way for low-cost, widely-tunable sources of electromagnetic radiation.
We study optical parametric oscillations in Kerr-nonlinear microresonators, revealing an intricate solution space -- parameterized by the pump-to-signal conversion efficiency -- that arises from an interplay of nonlinear processes. Using a three-mode approximation, we derive an efficiency-maximizing relation between pump power and frequency mismatch. To move beyond a three-mode approximation, a necessity for geometries such as integrated microring resonators, we numerically simulate the Lugiato-Lefever Equation that accounts for the full spectrum of nonlinearly-coupled resonator modes. We observe and characterize two nonlinear phenomena linked to parametric oscillations in multi-mode resonators: Mode competition and cross phase modulation-induced modulation instability. Both processes may impact conversion efficiency. Finally, we show how to increase the conversion efficiency by tuning the microresonator loss rates. Our analysis will guide microresonator designs that aim for high conversion efficiency and output power.
254 - Scott B. Papp , Pascal DelHaye , 2013
We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcombs optica l spectrum, and we demonstrate a record absolute line-spacing stability for microcombs of $1.6times10^{-13}$ at 1 s. The spectrum of a parametric comb is complex, and often non-equidistant subcombs are observed. Our results demonstrate that parametric seeding can not only control the subcombs, but can lead to the generation of a strictly equidistant microcomb spectrum.
Topological insulators possess protected boundary states which are robust against disorders and have immense implications in both fermionic and bosonic systems. Harnessing these topological effects in non-equilibrium scenarios is highly desirable and has led to the development of topological lasers. The topologically protected boundary states usually lie within the bulk bandgap, and selectively exciting them without inducing instability in the bulk modes of bosonic systems is challenging. Here, we consider topological parametrically driven nonlinear resonator arrays that possess complex eigenvalues only in the edge modes in spite of the uniform pumping. We show parametric oscillation occurs in the topological boundary modes of one and two-dimensional systems as well as in the corner modes of a higher-order topological insulator system. Furthermore, we demonstrate squeezing dynamics below the oscillation threshold, where the quantum properties of the topological edge modes are robust against certain disorders. Our work sheds light on the dynamics of weakly nonlinear topological systems driven out of equilibrium and reveals their intriguing behavior in the quantum regime.
Whispering gallery resonators (WGRs), based on total internal reflection, possess high quality factors in a broad spectral range. Thus, nonlinear optical processes in such cavities are ideally suited for the generation of broadband or tunable electro magnetic radiation. Experimentally and theoretically, we investigate the tunability of optical parametric oscillation in a radially structured WGR made of lithium niobate. With a 1.04 /mum pump wave, the signal and idler waves are tuned from 1.78 to 2.5 mum - including the point of degeneracy - by varying the temperature between 20 and 62 {deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا