ترغب بنشر مسار تعليمي؟ اضغط هنا

Study on 2015 June 22 Forbush decrease with the muon telescope in Antarctic

63   0   0.0 ( 0 )
 نشر من قبل Jilong Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By the end of 2014, a cosmic ray muon telescope was installed at Zhongshan Station in Antarctic and has been continuously collecting data since then. It is the first surface muon telescope to be built in Antarctic. In June 2015, five CMEs were ejected towards the Earth initiating a big large Forbush decrease (FD) event. We conduct a comprehensive study of the galactic cosmic ray intensity fluctuations during the FD using the data from cosmic ray detectors of multiple stations (Zhongshan, McMurdo, South Polar and Nagoya) and he solar wind measurements from ACE and WIND. A pre-increase before the shock arrival was observed. Distinct differences exist in the timelines of the galactic cosmic ray recorded by the neutron monitors and the muon telescopes. FD onset for Zhongshan muon telescope is delayed (2.5h) with respect to SSC onset. This FD had a profile of four-step decrease. The traditional one- or two-step classification of FDs was inadequate to explain this FD.

قيم البحث

اقرأ أيضاً

Blazars radiate from radio through gamma-ray frequencies thereby being ideal targets for multifrequency studies. Such studies allow constraining the properties of the emitting jet. 3C 279 is among the most notable blazars and therefore subject to ext ensive multifrequency campaigns. We report the results of a campaign ranging from near-IR to gamma-ray energies of an outburst of 3C 279 in June 2015. The overall spectral energy distribution from near-IR to gamma rays can be well represented by either a leptonic or a lepto-hadronic radiation transfer model. Even though the data are equally well represented by the two models, their inferred parameters challenge the physical conditions in the jet. In fact, the leptonic model requires parameters with a magnetic field far below equipartition with the relativistic particle energy density. On the contrary, equipartition may be achieved with the lepto-hadronic model, which however implies an extreme total jet power close to Eddington luminosity.
The GRAPES-3 muon telescope in Ooty, India had claimed detection of a 2 hour (h) high-energy ($sim$20 GeV) burst of galactic cosmic-rays (GCRs) through a $>$50$sigma$ surge in GeV muons, was caused by reconnection of the interplanetary magnetic field (IMF) in the magnetosphere that led to transient weakening of Earths magnetic shield. This burst had occurred during a G4-class geomagnetic storm (storm) with a delay of $frac{1}{2}$h relative to the coronal mass ejection (CME) of 22 June 2015 (Mohanty et al., 2016). However, recently a group interpreted the occurrence of the same burst in a subset of 31 neutron monitors (NMs) to have been the result of an anisotropy in interplanetary space (Evenson et al., 2017) in contrast to the claim in (Mohanty et al., 2016). A new analysis of the GRAPES-3 data with a fine 10.6$^{circ}$ angular segmentation shows the speculation of interplanetary anisotropy to be incorrect, and offers a possible explanation of the NM observations. The observed 28 minutes (min) delay of the burst relative to the CME can be explained by the movement of the reconnection front from the bow shock to the surface of Earth at an average speed of 35 km/s, much lower than the CME speed of 700 km/s. This measurement may provide a more accurate estimate of the start of the storm.
We present a multiwavelength analysis of the simultaneous optical and X-ray light curves of the microquasar V404 Cyg during the June 2015 outburst. We have performed a comprehensive analysis of all the INTEGRAL/IBIS, JEM-X, and OMC observations durin g the brightest epoch of the outburst, along with complementary NuSTAR, AAVSO, and VSNET data, to examine the timing relationship between the simultaneous optical and X-ray light curves, in order to understand the emission mechanisms and physical locations. We have identified all optical flares which have simultaneous X-ray observations, and performed cross-correlation analysis to estimate the time delays between the optical and soft and hard X-ray emission. We have also compared the evolution of the optical and X-ray emission with the hardness-ratios. We have identified several types of behaviour during the outburst. On many occasions, the optical flares occur simultaneously with X-ray flares, but at other times positive and negative time delays between the optical and X-ray emission are measured. We conclude that the observed optical variability is driven by different physical mechanisms, including reprocessing of X-rays in the accretion disc and/or the companion star, interaction of the jet ejections with surrounding material or with previously ejected blobs, and synchrotron emission from the jet.
122 - R. Munini , M. Boezio , A. Bruno 2018
New results on the short-term galactic cosmic ray (GCR) intensity variation (Forbush decrease) in December 2006 measured by the PAMELA instrument are presented. Forbush decreases are sudden suppressions of the GCR intensities which are associated wit h the passage of interplanetary transients such as shocks and interplanetary coronal mass ejections (ICMEs). Most of the past measurements of this phenomenon were carried out with ground-based detectors such as neutron monitors or muon telescopes. These techniques allow only the indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease commencing on 2006 December 14, following a CME at the Sun on 2006 December 13 was studied in a wide rigidity range (0.4 - 20 GV) and for different species of GCRs detected directly in space. The daily averaged GCR proton intensity was used to investigate the rigidity dependence of the amplitude and the recovery time of the Forbush decrease. Additionally, for the first time, the temporal variations in the helium and electron intensities during a Forbush decrease were studied. Interestingly, the temporal evolutions of the helium and proton intensities during the Forbush decrease were found in good agreement, while the low rigidity electrons (< 2 GV) displayed a faster recovery. This difference in the electron recovery is interpreted as a charge-sign dependence introduced by drift motions experienced by the GCRs during their propagation through the heliosphere.
Our simultaneous three-colour ($BVR$) polarimetric observations of the low-mass black hole X-ray binary V404 Cyg show a small but statistically significant change of polarization degree ($Delta p sim 1$ per cent) between the outburst in June 2015 and the quiescence. The polarization of V404 Cyg in the quiescent state agrees within the errors with that of the visually close (1farcs4) companion ($p_{R} = 7.3pm 0.1$ per cent), indicating that it is predominantly of interstellar origin. The polarization pattern of the surrounding field stars supports this conclusion. From the observed variable polarization during the outburst we show that polarization degree of the intrinsic component peaks in the $V$-band, $p_{V} = 1.1pm 0.1$ per cent, at the polarization position angle of $theta_{V}= -7degpm 2deg$, which is consistent in all three passbands. We detect significant variations in the position angle of the intrinsic polarization in $R$ band from $-30deg$ to $sim 0deg$ during the outburst peak. The observed wavelength dependence of the intrinsic polarization does not support non-thermal synchrotron emission from a jet as a plausible mechanism, but is in better agreement with the combined effect of electron (Thomson) scattering and absorption in a flattened plasma envelope or outflow surrounding the illuminating source. Alternatively, the polarization signal can be produced by scattering of the disc radiation in a mildly relativistic polar outflow. The position angle of the intrinsic polarization, nearly parallel to the jet direction (i.e. perpendicular to the accretion disc plane), is in agreement with these interpretations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا