ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Brain Dynamics During Social Exclusion Predict Subsequent Behavioral Conformity

101   0   0.0 ( 0 )
 نشر من قبل Nick Wasylyshyn
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Nick Wasylyshyn




اسأل ChatGPT حول البحث

Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (N = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (anterior cingulate cortex, anterior insula). Using cross-validated machine learning, this measure of global network connectivity during exclusion predicts the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences.



قيم البحث

اقرأ أيضاً

Attention-deficit/hyperactivity disorder (ADHD) is increasingly being diagnosed in adults, but the neural mechanisms underlying its distinct clinical symptoms (hyperactivity and inattention) remain poorly understood. Here, we used a nested-spectral p artition approach to study resting-state brain networks for ADHD patients and healthy adults and adopted hierarchical segregation and integration to predict clinical symptoms. Adult ADHD is typically characterized by an overintegrated interaction within default mode network. Limbic system is dominantly affected by ADHD and has an earlier aging functional pattern, but salient attention system is preferably affected by age and shows an opposite aging trajectory. More importantly, these two systems selectively and robustly predict distinct ADHD symptoms. Earlier-aging limbic system prefers to predict hyperactivity, and age-affected salient attention system better predicts inattention. Our findings provide a more comprehensive and deeper understanding of the neural basis of distinct ADHD symptoms and could contribute to the development of more objective clinical diagnoses.
Most humans have the good fortune to live their lives embedded in richly structured social groups. Yet, it remains unclear how humans acquire knowledge about these social structures to successfully navigate social relationships. Here we address this knowledge gap with an interdisciplinary neuroimaging study drawing on recent advances in network science and statistical learning. Specifically, we collected BOLD MRI data while participants learned the community structure of both social and non-social networks, in order to examine whether the learning of these two types of networks was differentially associated with functional brain network topology. From the behavioral data in both tasks, we found that learners were sensitive to the community structure of the networks, as evidenced by a slower reaction time on trials transitioning between clusters than on trials transitioning within a cluster. From the neuroimaging data collected during the social network learning task, we observed that the functional connectivity of the hippocampus and temporoparietal junction was significantly greater when transitioning between clusters than when transitioning within a cluster. Furthermore, temporoparietal regions of the default mode were more strongly connected to hippocampus, somatomotor, and visual regions during the social task than during the non-social task. Collectively, our results identify neurophysiological underpinnings of social versus non-social network learning, extending our knowledge about the impact of social context on learning processes. More broadly, this work offers an empirical approach to study the learning of social network structures, which could be fruitfully extended to other participant populations, various graph architectures, and a diversity of social contexts in future studies.
Multi-regional interaction among neuronal populations underlies the brains processing of rich sensory information in our daily lives. Recent neuroscience and neuroimaging studies have increasingly used naturalistic stimuli and experimental design to identify such realistic sensory computation in the brain. However, existing methods for cross-areal interaction analysis with dimensionality reduction, such as reduced-rank regression and canonical correlation analysis, have limited applicability and interpretability in naturalistic settings because they usually do not appropriately demix neural interactions into those associated with different types of task parameters or stimulus features (e.g., visual or audio). In this paper, we develop a new method for cross-areal interaction analysis that uses the rich task or stimulus parameters to reveal how and what types of information are shared by different neural populations. The proposed neural demixed shared component analysis combines existing dimensionality reduction methods with a practical neural network implementation of functional analysis of variance with latent variables, thereby efficiently demixing nonlinear effects of continuous and multimodal stimuli. We also propose a simplifying alternative under the assumptions of linear effects and unimodal stimuli. To demonstrate our methods, we analyzed two human neuroimaging datasets of participants watching naturalistic videos of movies and dance movements. The results demonstrate that our methods provide new insights into multi-regional interaction in the brain during naturalistic sensory inputs, which cannot be captured by conventional techniques.
Objective: Longitudinal neuroimaging studies have demonstrated that adolescence is the crucial developmental epoch of continued brain growth and change. A large number of researchers dedicate to uncovering the mechanisms about brain maturity during a dolescence. Motivated by both achievement in graph signal processing and recent evidence that some brain areas act as hubs connecting functionally specialized systems, we proposed an approach to detect these regions from spectral analysis perspective. In particular, as human brain undergoes substantial development throughout adolescence, we addressed the challenge by evaluating the functional network difference among age groups from functional magnetic resonance imaging (fMRI) observations. Methods: We treated these observations as graph signals defined on the parcellated functional brain regions and applied graph Laplacian learning based Fourier Transform (GLFT) to transform the original graph signals into frequency domain. Eigen-analysis was conducted afterwards to study the behavior of the corresponding brain regions, which enables the characterization of brain maturation. Result: We first evaluated our method on the synthetic data and further applied the method to resting and task state fMRI imaging data from Philadelphia Neurodevelopmental Cohort (PNC) dataset, comprised of normally developing adolescents from 8 to 22. The model provided a highest accuracy of 95.69% in distinguishing different adolescence stages. Conclusion: We detected 13 hubs from resting state fMRI and 16 hubs from task state fMRI that are highly related to brain maturation process. Significance: The proposed GLFT method is powerful in extracting the brain connectivity patterns and identifying hub regions with a high prediction power
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brains putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا