ترغب بنشر مسار تعليمي؟ اضغط هنا

Breathing multichimera states in nonlocally coupled phase oscillators

151   0   0.0 ( 0 )
 نشر من قبل Yusuke Suda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions, and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.



قيم البحث

اقرأ أيضاً

146 - Yusuke Suda , Koji Okuda 2015
Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera sta tes are chaotic transient and finally collapse into the completely synchronous solution. In this paper, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.
Spontaneous synchronization is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collect ive oscillations at a common frequency. The Kuramoto model provides the basic analytical framework to study spontaneous synchronization. The model comprises limit-cycle oscillators with distributed natural frequencies interacting through a mean-field coupling. Although more than forty years have passed since its introduction, the model continues to occupy the centre-stage of research in the field of non-linear dynamics, and is also widely applied to model diverse physical situations. In this brief review, starting with a derivation of the Kuramoto model and the synchronization phenomenon it exhibits, we summarize recent results on the study of a generalized Kuramoto model that includes inertial effects and stochastic noise. We describe the dynamics of the generalized model from a different yet a rather useful perspective, namely, that of long-range interacting systems driven out of equilibrium by quenched disordered external torques. A system is said to be long-range interacting if the inter-particle potential decays slowly as a function of distance. Using tools of statistical physics, we highlight the equilibrium and nonequilibrium aspects of the dynamics of the generalized Kuramoto model, and uncover a rather rich and complex phase diagram that it exhibits, which underlines the basic theme of intriguing emergent phenomena that are exhibited by many-body complex systems.
A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce t he delay system to a non-delayed Langevin equation, which allows us to analytically compute the distribution of frequencies, and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
In this paper we present a systematic, data-driven approach to discovering bespoke coarse variables based on manifold learning algorithms. We illustrate this methodology with the classic Kuramoto phase oscillator model, and demonstrate how our manifo ld learning technique can successfully identify a coarse variable that is one-to-one with the established Kuramoto order parameter. We then introduce an extension of our coarse-graining methodology which enables us to learn evolution equations for the discovered coarse variables via an artificial neural network architecture templated on numerical time integrators (initial value solvers). This approach allows us to learn accurate approximations of time derivatives of state variables from sparse flow data, and hence discover useful approximate differential equation descriptions of their dynamic behavior. We demonstrate this capability by learning ODEs that agree with the known analytical expression for the Kuramoto order parameter dynamics at the continuum limit. We then show how this approach can also be used to learn the dynamics of coarse variables discovered through our manifold learning methodology. In both of these examples, we compare the results of our neural network based method to typical finite differences complemented with geometric harmonics. Finally, we present a series of computational examples illustrating how a variation of our manifold learning methodology can be used to discover sets of effective parameters, reduced parameter combinations, for multi-parameter models with complex coupling. We conclude with a discussion of possible extensions of this approach, including the possibility of obtaining data-driven effective partial differential equations for coarse-grained neuronal network behavior.
253 - Hongjie Bi , Xin Hu , Xiyun Zhang 2017
Recently, the explosive phase transitions, such as explosive percolation and explosive synchronization, have attracted extensive research interest. So far, most existing works investigate Kuramoto-type models, where only phase variables are involved. Here, we report the occurrence of explosive oscillation quenching in a system of coupled Stuart-Landau oscillators that incorporates both phase and amplitude dynamics. We observe three typical scenarios with distinct microscopic mechanism of occurrence, i.e., ordinary, hierarchical, and cluster explosive oscillation death, corresponding to different frequency distributions of oscillators, respectively. We carry out theoretical analyses and obtain the backward transition point, which is shown to be independent of the specific frequency distributions. Numerical results are consistent with the theoretical prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا